
2005 International Command and Control Research and Technology Symposium

The Future of Command and Control

PEER-TO-PEER DISCOVERY: A KEY TO

ENABLING ROBUST, INTEROPERABLE C2

ARCHITECTURES

Topic: C4ISR/C2 Architecture

 David Heddle Ray C. Prouty Kurt Kalbus

 Chief Engineer Chief Engineer Sr. Software Developer

 david.heddle@sparta.com ray@sparta.com kurt.kalbus@sparta.com

15 March 2005

SPARTA, Inc.

13400 Sabre Springs Pky, #220

San Diego, CA 92128

Phone: (858) 668-3570

 1

PEER-TO-PEER DISCOVERY: A KEY TO ENABLING ROBUST,
INTEROPERABLE C2 ARCHITECTURES

Abstract

Net-Centric Operations (NCO) require highly distributed data, applications and personnel

across the military Services and agencies. The vision is that data will seamlessly pass

between multiple levels of security as warfighters search for and publish/subscribe to

services and data. At the center of this new enterprise architecture is the discovery of

services. Discovery is one of the “core services” identified for the Global Information

Grid (GIG) and is an essential element for legacy applications to migrate from stovepipes

to services. It also enables runtime integration and self-assembling networks, which are

critical for ad hoc communities of interest (COIs). The most challenging problem in

Discovery is in the discovery of services (vice people or data), which relies on the

technology of Universal Description and Discovery Integration (UDDI) registries.

In this paper, we discuss the gap between vision and reality and describe our research and

testing of technology options for Discovery. We begin with a description of the three

most common discovery methods (e.g., centralized, decentralized and semi-centralized).

We then address interoperability among various UDDI vendors and application program

interfaces (APIs) and identify the strengths and weaknesses of each discovery method.

Finally, we recommend an approach for a near-term, robust system.

1.0 Introduction

The revolution in Net-Centric Operations (NCO) requires ready access to the highly

distributed data, applications and personnel across the military services, agencies and

coalition partners. The vision for the near-term is that data will seamlessly pass between

multiple levels of security as warfighters search and publish/subscribe to services and

data. At the center of this new enterprise architecture is the discovery of services - the

key enabler for a Service Oriented Architecture (SOA). In this paper, we begin to

identify options for creating a net-ready Command and Control (C2) architecture with

decentralized management and self-adjusting networks - a key enabler to NCO.

 2

2.0 Organization of this Paper

This paper will begin by describing the role of the discovery service in the GIG. We then

present various approaches to discovery and discuss the design and implementation of a

peer-to-peer foundation. After that, we show results of testing the foundation. Finally, we

discuss future development of the peer-to-peer foundation and present an overall

summary.

3.0 Discovery’s Role in the GIG

One of the central themes of the GIG is the ability to employ Service Oriented

Architectures (SOAs)1. The use of SOAs enables loosely coupled applications, service

reuse, flexibility in system design and the ability to rapidly assemble

applications/solutions in an ad-hoc fashion. Some of the benefits that can be achieved by

this approach are: shorter development cycles, adaptability to changing missions, and

faster access to critical data. The key (or enabling technology) to all of this is the ability

to discover relevant data and services in a timely fashion.

The five major components of Discovery on the GIG are: discovery of services, data

asset discovery, people discovery service, organizations discovery service and the

registration service.

The discovery of services is a UDDI2-like service to find net offerings including

applications. Just like the people discovery service (below), this service will allow a

number of concurrent consumers to create concurrent searches and will support a data

store service offering records.

The data asset discovery service allows one-off data and recurring data to be discovered.

(Google is a well-known example of a data asset discovery service.)

1 See, Global Information Grid Core Enterprise Services Strategy, http://www.defenselink.mil/nii/doc/
2 Universal Description and Discovery Integration (UDDI), http://www.uddi.org/

 3

The people discovery service searches and retrieves matching Department of Defense

(DoD) personnel including civilians- most likely based on the common Lightweight

Directory Access Protocol (LDAP)3.

The organizations discovery service is similar to the people discovery service; it allows

organizations and roles to be discovered – and is also likely to be LDAP based. And, like

the data asset discovery service, this service will allow a number of concurrent technical

consumers to create concurrent searches. It will also support a data store of indexed

organization records.

The registration service allows consumers to register for dynamic enterprise content.

This service will record the consumer’s registration for data content in the enterprise

within seconds.

4.0 Approaches to Discovery

As part of the description of common methods, we address the DoD’s current discovery

approach4 which relies on a centralized discovery method by maintaining an index of

resources at a centralized server. It is the easiest to implement, but has a large drawback

in that the centralized index server is a single point of failure and requires a common

vendor among registries to insure interoperability with the discovery Application

Programmer Interfaces (APIs) or requires that all applications support different UDDI

vendors.

The other end of the spectrum of discovery approaches is a network of “equal” peers

where resources reside (e.g., peer-to-peer (P2P)). Queries for resources are propagated to

neighboring nodes until a match is found and the resource is returned to the requesting

peer. The Gnutella5 protocol, used in commercial applications, is a basis for many

3 Lightweight Directory Access Protocol, http://www.gracion.com/server/whatldap.html
4 Defense Information Systems Agency (DISA) Reports, Available at https://ges.dod.mil.
5 Gnutella, http://gtk-gnutella.sourceforge.net/index.php?page=faq

 4

decentralized P2P networks. Various music file sharing networks, as well as a general

purpose search engine, have been developed based on the Gnutella protocol. The main

advantage of a decentralized P2P system is reliability. If some peers on the network are

unavailable, the network functions without degradation, except for the loss of resources at

the unavailable nodes. The disadvantage of a fully decentralized P2P architecture is that

in actuality, the computer hardware running the peer software is not always equal.

Treating a slow machine with a dial up network connection equal to a fast machine with a

broadband connection can lead to bandwidth problems.

As a potential near-term solution, adopting the best of both extremes, we detail a semi-

centralized peer-to-peer (P2P) system, illustrated in Figure 1. We developed this concept

in our Net-centric Environment for System Testing and Operational Research (NESTOR)

project. Semi-centralized P2P systems consist of networks of peers where some of the

more powerful peers are designated as “supernodes”. Supernodes are used to cache

resources from less powerful peers, called “leafs”. When a request for a resource is

propagated through the network, attempts are made to find and return a resource from a

supernode to the requesting peer. This is a potentially attractive solution to the

bandwidth problem encountered with fully decentralized P2P networks.

Leaf NodesLeaf Nodes

Super
Nodes

Figure 1: Semi-Centralized Peer-to-Peer Network

 5

5.0 Designing a Peer-to-Peer Discovery Foundation

Our NESTOR discovery architecture is based on the LimeWire6 open source code.

Enhancements were made to perform keyword queries on distributed UDDI registries for

Web Services. In our NESTOR implementation, illustrated in Figure 2, each node in the

network is aware of one or more UDDI registry servers. When a peer receives a UDDI

discovery request, it searches its known UDDI servers for a matching Web Service. If a

match is found, information about the discovered Web Service (such as its Web Services

Description Language (WSDL)) is returned to the requesting peer. In addition, the

discovery request is further propagated to other peers on the network to search for more

matches. One major benefit of this approach is that the discovery peers interface with

their known UDDI servers via a vendor-independent API. In this way, UDDI servers

from different vendors can be added to the network without change to the peer program

code – a huge cost savings for the military. This attribute is highly desirable for

interoperability among various US military organizations and, we contend, a requirement

for interoperability with our coalition and allied partners.

UDDI DB

UDDI DB

UDDI DB

UDDI DB

UDDI DB

UDDI DB

Mission Planner

Sensor Data Service

Users

or

Applications

Peer

Peer

Peer

Leaf
Nodes

Super Nodes

Peer

Peer

Peer

Peer Leaf
Nodes

Problem Statement: User (or Application) Seeks
to Find “Sensor Data Service”

Discovery
Request

Figure 2: NESTOR Peer-to-Peer Discovery Network

6 Limewire, www.limewire.com

 6

The LimeWire approach was chosen for two primary reasons. First SPARTA, Inc has

successfully used this code in a previous application. Secondly, the basic LimeWire code

provides a well-tested, robust infrastructure for peer-to-peer communication inside and

outside firewalls, as well as implementing the concepts of super-nodes and leaf nodes in a

platform independent manner.

6.0 Implementing a Peer-to-Peer Discovery Foundation

Version 4.0.6 of the LimeWire Java open-source code was used as a starting point. The

code consists of two main packages: core and gui. The core package implements the

peer-to-peer infrastructure and handles the network file search and transfer. The gui

package provides a graphical user front end and interfaces with the core back end. For

our purposes, we dispensed with the gui package and imported the core package into an

Eclipse (v2.1.3) project.

The first change to the core package consisted of removing some of the peer ‘bootstrap’

functionality to handle the requirement that any peer-to-peer system must know about

neighboring peers in order to start communication with the network. The LimeWire core

package uses both a configuration file and a list of internally specified Uniform Resource

Locators (URLs) in order to ‘bootstrap’ the communication. We stripped out the internal

URLs and modified the configuration file to eliminate the “well-known” Gnutella caches

from consideration since those peers will be generic LimeWire peers and will not know

how to handle Discovery request messages.

The second change to the code involved implementing a Discovery request message. The

LimeWire code defines a QueryRequest message class which contains, among other

things, keywords for network file searches. It is the information in the QueryRequest that

is propogated throughout the peer-to-peer network in order to search for matching file

names on peer nodes. The new DiscoveryRequest class is basically identical to the

QueryRequest with a different functional header. In this way, DiscoveryRequests will

take advantage of the LimeWire infrastructure for propagating messages throughout the

 7

peer-to-peer network. The real difference is what happens when a DiscoveryRequest is

received by a peer and what happens when the originating peer receives the reply back

from its original DiscoveryRequest.

Changes were made to the base LimeWire code to recognize an incoming

DiscoveryRequest message. When such a message is detected, instead of searching a

directory for a filename (as in the case of a QueryRequest), the peer invokes a vendor

independent UDDI API to search for Web Services matching the provided keywords.

(See section 7.0). If a Web Service is found, a DiscoveryReply message is formulated

and sent back to the originating peer. This reply currently contains the Web Service

name, description and WSDL Uniform Resource Identifier (URI). Whether or not Web

Services are found, the DiscoveryRequest is then forwarded to neighboring peers.

When the originating peer receives the DiscoveryReply message a new query reply

handler is invoked to parse the DiscoveryReply message and extract the Web Service

names, descriptions and WDSL URIs.

7.0 Vendor Independent UDDI API

There are many UDDI registry products available from several vendors. Some UDDI

registries, such as those from Systinet7 and Acumen Technologies8, are standalone

products. Other vendors, such as WebLogic and Sun, integrate a UDDI server into their

Application Server products.

Most vendors provide a Java-based UDDI client API so that Java applications can be

written to access their UDDI registry. In addition, there are standards such as JAXR that

define Java UDDI APIs. Vendors generally try to make their UDDI registries conform to

standards such as JAXR, so that an implementation of JAXR, such as that from Sun,

should theoretically interface to a particular vendor’s UDDI.

7 Systinet UDDI Registry, http://www.systinet.com/products/sr/overview
8 UDDI, www.acumentechnologies.com, http://www.uddi.org/solutions.html#Acumen_Technology

 8

Despite vendor claims, our research and experimentation showed that no single UDDI

API would always successfully interface with a given UDDI registry. Depending on the

release level of the API, the release level of the UDDI registry and even the version of

Java used to compile and run the client application, the client might or might not be able

to publish to or query a particular UDDI. The results of our experimentation are shown

below in Figure 3.

Figure 3: Vendor Interoperability with UDDI APIs and Server Registries

One of the key goals of our Discovery service is to be able to discover Web Services

from any brand of UDDI registry – enabling a net-ready key capability. For this reason,

we developed a vendor independent Java-based UDDI API. The API is essentially a

“wrapper” around lower level APIs that have been proven to work with various UDDI

registries. This vendor independent API is invoked by the Discovery peers (as described

in section 6.0) and has been tested with WebLogic, Sun and Systinet UDDI registries.

 9

8.0 Testing the Peer-to-Peer Foundation

As part of our NESTOR project, a small test network of Discovery peers and UDDI

registries was setup. The architecture for this test is shown in Figure 4. The following

table summarizes the underlying network:

Hostname IP address
Operating

System (OS)
UDDI registry UDDI Host

Potato

(San Diego)
157.185.24.29 Win XP Pro Sun Potato

Chakotay

(San Diego)

157.185.24.253

Win 2003 Serv WebLogic Chakotay

Kirk

(Hampton)
157.185.52.20 Win 2003 Serv Systinet Kirk

Watergate

(Rosslyn)
157.185.86.236 Win 2000 Sun Potato

The first two machines reside behind the same firewall in SPARTA San Diego. The

other two machines reside behind two separate firewalls at locations on the East Coast

(i.e., Rosslyn/Arlington and Hampton, Virginia). There are three different UDDI

registries running on the network. The Watergate machine does not have a UDDI

registry, but the Discovery Peer running on that machine has been configured to query

the Sun UDDI registry on one of the SPARTA San Diego machines. Several Web

Services were registered in each of the UDDI registries. In particular, a Web Service

with the keyword “missile” was registered in all three UDDI registries.

Discovery peers were installed and started on each of the four machines in the network. A

simple Java GUI front end was written to interface with the Discovery peer on the

 10

computer known as ‘Potato’. (This GUI front end logically replaces the gui package

provided with the default LimeWire code, as described in section 6.0).

Systinet UDDI

Missile Web Service

Potato – 157.185.24.29
(San Diego)

Chakotay – 157.185.24.253 (San Diego)

Watergate – 157.185.86.236 (Rosslyn, VA)

WebLogic UDDI
• Missile Web Service
• Cera Web Service
• Metrics Web Service

Discovery Peer

Internet

WL UDDI API JAXR UDDI API

Discovery Peer
WL UDDI API JAXR UDDI API

Kirk – 157.185.52.20 (Hampton)

Discovery Peer

Sun UDDI
Missile Web Service

Discovery Peer
WL UDDI API JAXR UDDI API

Sun UDDI on Potato
Missile Web Service

Firewall

Firewall

Firewall

Figure 4: Discovery Proof-of-Concept Test
The LimeWire code checks a bootstrap configuration file (gnutella.net) to initiate

communication with the peer-to-peer network. In this test network, initially the

gnutella.net file for the Discovery peer on Potato was empty. The gnutella.net file on

Chakotay was initialized to connect to the peer on Watergate. The peer on Watergate

was initialized to connect to the peer on Kirk. The important point here is that the

originating peer on Potato initially had no direct knowledge of any of the other peers

running on the test network.

The keyword “missile” was entered into the GUI client on Potato. The GUI client

triggered the Discovery peer on Potato to initiate a DiscoveryRequest for Web Services

containing the keyword “missile”.

The LimeWire infrastructure first sends out the DiscoveryRequest to all the peers on the

same subnet via multicast. Thus, the Chakotay peer receives the DiscoveryRequest from

 11

Potato and searches its WebLogic UDDI registry and finds the “missile” Web Service. It

sends back a DiscoveryReply to the Potato peer.

The peer on Chakotay then forwards the DiscoveryRequest to it’s known peers – in this

case, the peer on Watergate, which discovers the “missile” Web Service in it’s Sun UDDI

registry (which actually resides on a different machine). The Watergate peer also sends a

DiscoveryReply to the Potato peer. The same process occurs as the Watergate peer

forwards the DiscoveryRequest to the Kirk peer.

Thus the DiscoveryRequest for “missile” which was initiated by the Potato peer resulted

in the discovery of the three “missile” Web Services registered in the three UDDI

registries on the test network, even though the gnutella.net file on Potato initially

contained no information whatsoever about neighboring peers.

It should be noted that after receiving the three hits back from the peer network, the

LimeWire code will record the IP addresses of the responding peers in the local

gnutella.net file. Therefore subsequent requests will be sent directly to the peers that

have been previously found to be “friendly”.

This test proved several key points: (1) a heterogeneous UDDI registry system can be

built to allow different Services, Agencies and Coalition enclaves to quickly join the net,

(2) a semi-centralized peer-to-peer system can support Discovery using the LimeWire

approach and (3) discovery requests can be handled across firewalls in a timely fashion.

9.0 Future Development of the Peer-to-Peer Discovery Foundation

The following areas have been identified as items for future Discovery foundation

enhancements:

1) Development of a more robust browser-based front end to the Discovery service,

similar to familiar Web search engines, such as Google.

 12

2) Enhancements to the Discovery API, so that other applications can be more easily

written to take advantage of the Discovery service.

3) Testing the network with a more heterogeneous mix of super-nodes and leaf-

nodes, for example using machines that are connected to the network via dial-up.

4) Implementing a mechanism to gather metrics about performance and coverage of

the Discovery peer-to-peer network.

5) Expanding the Discovery functionality to include more than just finding Web

Services, such as querying LDAP registries for information about people.

6) Implement additional security mechanisms, such as group security protocols.

10.0 Summary

Discovery is recognized as a core service for the Global Information Grid. It is also

one of the least understood of the core services. Our research demonstrates a concept

that is able to negotiate firewalls and find actual, viable services based on a keyword

search. The semi-centralized peer-to-peer architecture mitigates both the single point

of failure problem of centralized architectures and the bandwidth bottlenecks that

arise in heterogeneous fully decentralized systems. Finally, we describe a path for

expanding and enhancing our foundation for enterprise-level testing and to

demonstrate how this discovery implementation will provide a bridge among COIs

and a foundation for secure cross-service and allied interoperability. This approach

allows heterogeneous vendor solutions (i.e., no single vendor for UDDI must be

chosen), which is very advantageous in acquisition and promotes rapid

interoperability as we move to a complete net-ready GIG across all COIs.

