
On the Building of a UML Profile for the Description of Army
Architectures in the Context of Complex Systems

Mario Couture* and Antoine Duval**

*Systems of Systems Section

Defence R&D Canada - Valcartier
Val-Bélair, Qc, Canada, G3J 1X5
Mario.Couture@drdc-rddc.gc.ca

**Now at Canadian Meteorological Ctr
Environment Canada
Dorval, Qc, Canada

Antoine.Duval@ec.gc.ca

Abstract

 This paper addresses the work surrounding the conception and building of a
Unified Modeling Language (UML) profile to be used to model military architectures in
the context of complex systems. The revolution in military affairs, which imposes
fundamental change in strategic planning and management, causes a shift from the old
stovepipe bottom-up threat-based planning to a new top-down Capability-Based Planning
(CBP). CBP involves, for instance, the management of acquisition projects from a more
global perspective (at enterprise level) and imposes the use of a more holistic and
integrating approach. The UML and the proposed Military Architectures UML Profile
(MAU-Profile) provide a language that makes it possible to model military systems and
concepts by using such an approach. The MAU-Profile and modeling conventions, which
guide the use of UML in the context of System Engineering and CBP, are presented in
this paper. An important requirement expressed by military authorities about this profile
was that it should be easy to be used by non-experts. In this regard, the structure of the
stereotype list takes the form of a tree containing eight main entries from which
stereotype names can be easily retrieved. This structure is based on our generic definition
of the word “system”. Some examples showing the use of the profile in a context of CBP
are also presented.

1 Introduction

The Defence Management System is an evolving set of means and tools used in
the framework of Canadian Defence Service Programs to deliver services to the Canadian
Department of National Defence (DND). While it has experienced many changes for the
last 40 years, the revolution in military affairs that started to occur in the nineties
encouraged DND to effect fundamental change in their strategic planning and
management approach. This change can be summarized as a shift from the old stovepipe
bottom-up threat-based planning to a new top-down Capability-Based Planning (CBP).
This shift is based upon the 1994 Defence White Paper (DND, 2004a), Canada’s defence
policy document. This last document prescribes the exploration of innovative ways of
acquiring and maintaining equipment. Michaud (2004) and Corbett (2004) give an
overview of CBP.

The Canadian military acquisition undergoes major transformations. These

involve many changes in military domains, organizations, used technologies, and

processes. Once completely functional, CBP will make it possible to manage capability
development by emphasizing on integration, option analysis and detailed trade-offs
analysis between acquisition projects. It will also lead to the identification of optimum
investments in a restricted governmental financial framework.

CBP involves the use of enterprise perspectives or views that should consider
many different acquisition projects and domains at the same time. In this context,
traditional System Engineering disciplines taken separately might not be sufficient to
address this new complexity. The concurrent re-use of current mature disciplines (like
those found in System Engineering, Software Engineering, and System Thinking) into a
holistic and integrating approach seems to be a more appropriate solution to achieve
CBP. Some works on this matter can be found in: Cook and Sproles (2000a), Cook and
Sproles (2000b), Cook (2001), Sage and Cuppan (2001), Keating and al (2003), Moti
(2000), and Chen and Clothier (2003).

Architecture descriptions should also be adapted for CBP. They should support
the holistic approach by allowing the modeling and the linking of any relevant concepts
that pertain to any domain and project of an enterprise. They should also ease and
promote the exchange and sharing of this information between these domains and
projects. There is thus a need for a modeling language that should be understood by
stakeholders from all levels, that should allow the modeling of any concepts, and that
should support the holistic approach. The object-oriented generic UML modeling
language (UML, 2004) combined with its extention mechanism were chosen as a solution
by military authorities.

This paper presents work currently in progress at DRDC Valcartier to conceive
and build a UML profile for this context; it is called Military Architecture UML Profile
(the MAU-Profile). If used with appropriate CASE tools and databases, the MAU-Profile
will promote holism by allowing the modeling and linking of any concepts pertaining to
any military domain. Some preliminary work was necessary to identify and understand
the concepts that must be modeled. An understanding of the contexts within which the
profile will be used is thus presented in Section 2. The MAU-Profile is then described in
Section 3. The stereotype list, the use of the profile and some examples of its use are
given. Section 4 concludes this paper. The reader will find a definition of important terms
in the Glossary.

2 The Context of Utilization for the MAU-Profile

Figure 1 is a high-level and voluntarilly simplified schematic of a top-down
military acquisition system. Even if this example does not necessarily reflect the exact
future state of the Canadian military acquisition, it is used here to show some concepts
that are of importance in building a MAU-Profile. The Government Strategic Direction
can be viewed as a predefined set of high-level missions that the Canadian Government
asks DND to accomplish at home and abroad. These missions are decomposed into
Capability Areas, which are constituted of a set of predefined Capabilities.

Systems of Systems (SoS) that are put into action “in-the-field” (during exercises
and real theatres) perform some patterns of actions, which allow the achievement of these
capabilities. The management, conception, development and even the use of military
systems are not anymore based on threat but on needed capabilities. This means among
other things that systems constituting SoS may be re-used within different sets of
scenarios (or SoS) to achieve different capabilities. CBP encourages thus the merging and
re-use of complementary military systems in a collaboration mode to form operational
SoS “in-the-field”. All collaborating systems of a SoS are sharing the same common
mission: to achieve the needed capability. The orientation of systems’ actions should thus
be aligned toward the accomplishment of this common mission. In this mode, the
capability of the whole SoS to accomplish one mission is greater than the sum of
individual systems’ abilities (taken separately without collaboration) to achieve the same
mission.

Options

Governmental Strategies

Government
Strategic

Directions

Capability
Areas Capabilities

Option(s)
Analysis

Option(s)
Selection

Selected
Option(s)
Definition

Utilisation

Development

Development
(Evolutionary)

Testing,
Training

Validation
(Exercices),

Implementation,
Documentation

Training,
Implementation,

Merging,
Upgrading

Utilization Dispose

R&D and
Selected
Option

Specification

Bottom-Up
Feedback

Engineering Cycles

Evolutionary
Acquisition Cycle

Capability Gaps

Top-Down
Capability-

Based
Planning

A

B

C

D

Figure 1. A generic view of the CBP approach in the context of DND acquisition

Once capabilities are identified (in Figure 1), Capability Gaps are then deduced
by comparing these needs with what is available in terms of already owned systems to
achieve the needed capabilities. Option Analysis and Option Definition processes
identify, define and describe specifications for potential options (systems). The chosen
options are then detailed and developed based on these specifications. They are tested,
validated (by “in-the-field” exercises), and then accepted as “operational” for their use in
theatres. Training and disposal are also part of acquisition.

 While CBP is a top-down approach, different feedbacks are necessary for the
global acquisition to be optimized. This insures that the developed options fit well “in-
the-field” and meet concrete strategic, operational, and tactical requirements. As the

requirements for military systems often evolve during the lifecycle of systems, partial
capabilities may be delivered using the evolutionary acquisition approach.

Military, industries and academic “in-the-labs” organizations that are achieving
such military acquisition are relatively independent (operationally and managerially).
They must collaborate to accomplish their common mission. They must perform DND
acquisitions in the most effective and efficient manners in accordance with the
Government Strategic Direction. Actually, they form SoS themselves; they are people
using processes, technologies and materiel to collabotrate with other systems. Four
different kinds of SoS have been identified in the example shown in Figure 1. They are
represented by three-linked-dots icons A, B, C and D. Types A, B, and C correspond to
“in-the-labs” SoS, while type D correspond to “in-the-field” SoS.

Enlarging this SoS perspective to a greater extent, Figure 2 shows that the whole

acquisition system can be seen as an overall enterprise complex architecture (depicted as
SoS W in Figure 2), which is made of other collaborating complex systems (SoS A, B, C
and D). The consideration of both “in-the-labs” and “in-the-field” SoS together as
forming itself an enterprise SoS suggests that the global architecture description should
consider all its components as part of a whole sociotechnical system (with a focus on
interrelationship; Maier, 1998). In this context, any cause/effect that may have influences
on emergent behaviors of the whole should be identified, described and modeled in
architecture descriptions, no matter the domain or the project (holism).

Global SoS
(Acquisition System)

SoS (type A)
(Governmental

Strategies)

SoS (Type B)
(Options)

SoS (Type C)
(Development)

SoS (Type D)
(Utilization)

Syst. 1 Syst. 2 Syst. 3 Syst. 4 Syst. 5 Syst. 6 Syst. 7 Syst. 8 Syst. 9 Syst. 10 Syst. 11

A B C D

W

Figure 2. The global architecture of the whole acquisition system

Figure 3 depicts an instance of a simplified acquisition system in the CBP context.
This interpretation gives high-level hints regarding how acquisition projects should be
managed in this context and what concepts should be captured in architecture
descriptions. In this figure, each acquisition project is associated with a predefined
Capability, which in turn can be identified to one Capability Area (only two capabilities
are shown). The end product of an acquisition project is a SoS of type D that will achieve
capability when put in action “in-the-field”. For instance, acquisition project 2 aims at
developing systems 2, 3, 8, 9 and 13 (SoS 2). These systems will achieve Capability 2 (of
Capability Area 1) when they will be collaborating “in-the-field”.

Sy
st

em
 1

Sy
st

em
 3

Sy
st

em
 2

Sy
st

em
 8

Sy
st

em
 9

Sy
st

em
 1

3

(P) Personnel

(R) R&D

(I) Infrastructure &
Organizations

(C) Concepts, Doctrines,
Colective Training

(I) Information
Management

(E) Equipment, Supplies &
Services

1 1

1

1

2

2

2

2

2

2

22

Acquisition
Project 1 Acquisition Project 2

2

Feedback

Impacts

Capability-Based Planning

Controls

Feedback

Triggers

B)

1

2

PRICIE Model
(Functional Components:

P-R-I-C-I-E)

Acquisition Project 1 Acquisition Project 2

Capability Area 1

Capability 1 Capability 2

Involves
Involves

System 3
System 2

System 8 System 9

System 13

Collab. Collab.

Colab.

System 1

System 3

Collaboration Collab.

Colab.
1

A)

2

Figure 3. A hypothetical DND acquisition instanciation

As mentioned earlier, in the context of CBP, systems must be re-used within
different SoS in order to contribute to the achievement of different capabilities whenever
relevant and possible. Any relevant financial, managerial and engineering-related aspects
may thus have to be managed or at least known at a higher level (higher than project
level). For instance, Figure 3A shows that system 3 would be re-used in SoS 1 and/or 2 to
achieve capabilities 1 and/or 2, according to the needs. The two involved acquisition
projects (1 and 2) should thus be aware of all specifications regarding the functionalities
system 3 should fulfill to achieve capabilities 1 and 2. They should in turn provide the
higher level of management all the financial, managerial and technical information that
are necessary to the global optimization of efforts (bottom-up feedbacks of Figure 1).

Figure 3B depicts another perspective of the same example. It shows that the CBP
should trigger and manage acquisition projects according to needed capabilities (instead
of threats), concurrently taking into account already owned and used systems plus the
state of other systems under development. Any information about the development of
shared systems (system 3 for instance) should be fed back to CBP level for cross-
considerations between acquisition projets. Again, this would contribute to ease the
global management and optimization at higher level (at CBP level). Figure 3B also shows
that PRICIE functional components (DND, 2004b) and the links between them should be
considered while addressing capability gaps. The Canadian Joint Task List (DND, 2004b)
identifies which functional components should be emphasized while considering
capability gaps.

Stakeholders and operators use processes, doctrines, technologies and materiel as
means to manage, develop and operate complex systems like the ones shown in Figure 3.
This suggests that these means should be used together; they should be interoperable to
allow exchanges of information from one part of the architecture to another (that may
pertain to another domain or project). For instance, the “on-the-fly” change of a specific
requirement (associated with one specific system of one project) may have impacts on
other projects involved in the building of a SoS. It may also have impacts on “in-the-
field” operations, by making operational systems (or SoS) less efficient for instance.
Teams from other relevant domains or projects should thus be aware of the requirement
changes; they should validate and approve these changes before they are generally
adopted (bottom-up feedbacks in Figure 1). During the “in-the-field” operation of a SoS,
metrics should be used to monitor all its relevant behaviours. Measures of SoS
complexity (Araujo and Caraça, 1999) of SoS inherent disorder (Hitchins, 2003) and
deviation from its initial global mission boundaries are examples of new metrics that
should be considered while operating SoS.

The traditional System Engineering that mostly deals with linear and deterministic

stovepiped projects and that uses reductionism approach appears to be no more sufficient
to deal with such complex systems at enterprise level. Architecture descriptions must also
be upgraded in order to provide stakeholders and operators with complete integrated
views of the whole (at enterprise level), with appropriate levels of details. These views
should focus on components (and their interfaces; Maier (1998)) to measure or gauge the
ability of the whole to fulfill its mission. Favoring holism should contribute to raise the
synchronicity and homogeneity of the whole. It should also ease the orientation of
systems’ actions toward the accomplishment of the SoS global mission.

The MAU-Profile is proposed as one supporting solution. The next section gives a
description of this profile.

3 The MAU-Profile

The UML modeling language was considered to model “in-the-field” and “in-the-
labs” complex systems because of its popularity, its evolution (see SYSML for such
evolutions; SYSML (2004); SYSENG (2004)) and its powerful extension mechanism.
Using such languages, the process of modeling consists in iteratively creating and
evolving models that represent domain elements in an accurate, understandable,
consistent and modifiable ways. These models form an architecture description.

Figure 4 illustrates the four-layer hierarchy (M3, M2, M1 and M0 levels) used by the

Object Management Group (OMG, 2004) to define modeling languages like UML. The
Meta-Object Facility (MOF) is located at M3 level. It is composed of a minimal set of
elements that make it possible to define UML at layer M2. UML has its meta-model
elements defined at the M2 level and it is used at the M1 level. For instance, the UML
model element “class” defined at M2 may be used to represent domain specific concepts
or systems at M1. Instances of these model (or real-life objects) are represented at level
M0. Figure 4 shows a class representing a “Brigade” at level M1; it may represent any

brigade of the domain of interest, it has no identity. One instance of this class Brigade is
the 5th Brigade at M0. This specific instance has one identity. In Figure 4, tagged values
(stating the country) are added to M1 and M0 UML elements to show how model
parameterization can be achieved in UML diagrams. This four-layer meta-model
hierarchy (using the MOF) is not limited to UML; it makes it possible to define other
meta-models (at M2 level). For instance, it would be possible to define a new meta-model
that would be dedicated to the modeling of business management.

Meta-Class

Attribute

Class

: 5th Brigade

M3
MOF

M2
UML

M1
User

model

M0
Run-time
instances

Brigade

<<instance of>>

<<instance of>>

<<instance of>>

+title: String

<<instance of>>

<<instance of>>

Association

{Country: Canada}

{Country: Canada}

Figure 4. The four-layer meta-model hierarchy used by OMG

UML is mainly used in Software Engineering, but it can be used to model any
concept, no matter the domain. Events, decisions, chronological, logical and reference
links, computer, software, works, facts, causes and effects are examples of concepts that
must be modeled and integrated into an architecture description.

The MAU-Profile is made of a list of stereotype names, of modeling conventions,

and tagged values. Stereotype names extend the semantic of UML graphic elements to
better characterize UML models for the domains. Modeling conventions guide modelers
in their use of UML model elements. Tagged values are attached to model elements to
hold some specific pieces of information. The next sections describe the elements of the
MAU-Profile.

3.1 Stereotype Lists and Tagged Values

The foundation of the MAU-Profile is depicted in Figure 5. It is based upon our
definition of system (see Glossary). All stereotype names are identified and defined on
the basis of this definition. It can be summarized by the two following sentences:

To accomplish its Mission(s), a System (or a SoS) transforms Input(s)
into Output(s) by doing appropriate Action(s), in specific Context(s),
and following a set of Rule(s). All Characteristics that can be
measured or evaluated should be captured.

The reader will recognize underlined words of these two sentences in the

foundation of the MAU-Profile (Figure 5). These words form the structure of the profile.

MAU Foundation

Input

Output

Characteristic

Context

Rule

Action

Nature

Transferred
to

System

People

Processes

Technologies

Materiels

Complex System

System

SoS

Do

Respect

Are
realized

in

Apply to

Form

Specification

Have

Have

Have

Are
made

following

Form

1..N

N

1..N

1..N
1..N

1..N

1..N

1..N

1..N

1..N

FormIs part of

Is part of
Deliver

Mission

Has

1..N

Determine

Collaborate
with

1..N

1..N

Figure 5. Foundation of the MAU-Profile

Based on this foundation, Figure 6 gives an overview of the structure of stereotype
names used in the MAU-Profile. It has the form of a tree (note that only a limited number
of stereotype names are shown for clarity purposes). The structure is based on eight high-
level entries (System, Input, Action, Rule, Context, Mission, Output, and Characteristics)
that are further decomposed into branches containing other stereotypes names. It is a
generic classification that can be re-used in any domain; the concept of system can be re-
used no matter the domain. It potentially represents a common language that can be used
to holistically describe any domain of an enterprise. The complete list of stereotype
names will be available in Couture (2005).

 The first requirement expressed by military authorities for this work was that the
modeling language should be easy to use by non-experts. Minimal training should be
needed prior to its use. The lessons learned show that, in high stress operational situations
where time is limited, operators prefer to use simpler tools which do a good job rather
than hard to learn complex tools which do perfectly the same job. This simple structure
(Figure 6) helps non-experts in finding stereotype names in tables by offering logic that is

based on association of semantics from the highest levels (the eight main entries) to the
lowest levels (the leaves; not shown in this figure).

Stereotype Structure

Root

<<System>>

<<Input>>

<<Action>>

<<Rule>>

<<Context>>

<<Output>>

<<Characteristic>>

<<Nature>>

<<Form>>

<<Specification>>

<<Coloration>>

<<Mission>>

<<People>>

<<Processes>>

<<Technologies>>

<<Materiels>>

<<SoftwareOriented>>

<<HardwareOriented>>

<<AbstractOriented>>

<<Vehicle>>

<<AirVehicle>>

<<Helicopter>>

<<Environment>> <<Geographic>>

<<Politic>>

<<ObjectElement>>

Figure 6 Overview of the MAU-Profile stereotype structure

The semantic of the stereotype name is always related to the semantic of its
parents. For instance, the <<Context>> main entry (Figure 6) contains a branch called
<<Environment>>, which in turn contains a branch <<Geographic>>, which in turn
contains a branch <<Politic>>, and so on. One or many of these stereotype names can be
used concurrently to express different flavors of <<Context>>.

A stereotype name is not exclusive to the branch it belongs to. Stereotype names

may have different semantics, so the name can be re-used in different contexts. For
instance, the stereotype name <<Area>> may be associated to space (<<Spatial>>
<<Area>>), to mission (<<Mission>> <<Area>>) or to any domain (<<Domain>>
<<Area>>). In the MAU-Profile, a stereotype name can be re-used as needed with
different semantics. One or many stereotype names can be used together to make models’
semantic more precise.

Some of the stereotype names were extracted from the C2IEDM (C2IEDM, 2005)
and the CADM (CADM, 1998) data models. One of the main advantages of re-using such
data models concepts is related to the fact that they are dedicated to the military domain.
The DOD-AF (DOD-AF, 2003a; DOD-AF, 2003b; DOD-AF, 2003c) may be used to
describe DND architectures. Re-using CADM’s entity and relationship names will
contribute to make the profile DOD-AF compatible (actually, this framework already
uses UML diagrams).

The proposed stereotype list aims at providing names that will be added to UML
elements for high-level classification purposes; they are not intended to make UML
elements “very close instances”. This constraint will prevent the stereotype list from
becoming huge and unusable. For instance, the word “Apache”, which is associated to a

specific kind of helicopter, will not appear in the stereotype list. Instead, the modeller
must choose the stereotypes <<AirVehicle>> or <<Helicopter>> (or both) from the list to
specialize the UML model element. The modeller should then use the word “Apache” to
name the model. Instances or objects of this model would have their name adapted to
specific object (having one identity), an example of a name of an instance is: XL25Z:
Apache. The last part “Apache” is the name of the class and first past identifies the real-
world instance.

Further parameterizations or characterizations of the UML model elements are

achieved by adding tagged-values. It is suggested in this first version of the MAU-Profile
to use CADM and C2IEDM data models’ entities, relationships and attributes as tagged-
values. They offer the advantage of being used by Canadian Forces organizations and
they are relatively complete and stable.

Keeping the list of stereotype names as small as possible has many advantages when
comes the time to use it. If all names representing military objects or concepts had been
added to the stereotype list, it would have been huge and unusable.

3.2 The Use of the MAU-Profile

Modeling conventions are used to specify how to use the UML model elements
and its profile in the context of System Engineering. They also contribute to standardize
the ways architectures are modeled by different people. Questions like: “what does a
UML component means while modeling systems other than software” are answered in
this section.

In Software Engineering context, an instance of a class means “the runtime
instance running on a processor and in memory”. Military systems are not made of pure
software only. Thus, an instance of any system represents “the instance that has a living
in the real world”. This definition of “instance” for system is more generic.

In the context of Software Engineering, an interface collects a set of operations that
constitute a coherent service offered by a classifier. An interface is thus a collection of
operations with a name. It cannot be instantiated. In the context of military systems, the
concept of interface is more general as it has to include any kind of exchanges between
systems of any nature. It is defined by the common limits and means that allow
collaborations or exchanges between two systems. In this context, interfaces allow
exchanges of fuel, energy and other kinds of physical and abstract flows like data or
information.

Based on these definitions, modeling conventions that define the MAU-Profile are

described in the following lines:

• Naming UML element. The name chosen to identify a UML element should be
representative of the concept modeled.

• Using stereotype names: Any UML elements (classes, nodes, association, etc.)
can be stereotyped (using the MAU-Profile stereotype names) to represent any
domain elements. Stereotype names can be used at M0 and M1 levels. In the
MAU-Profile, a stereotype name can be re-used as needed with different
semantics. One or many stereotype names can be used together to make the
models’ semantic more precise;

• Using tagged values: Tagged-values can be used to further characterize UML
elements for the domain. CADM and C2IEDM entities/relationships are proposed
as tagged-values for this version of the profile. Tagged values can be used at M0
and M1 levels;

• Using namespace: A stereotype might be prefixed by a package name (using “::”
to separate both names). The package name for any MAU-Profile elements is
"MAU". That should solve naming conflicts if other profiles or stereotypes are
used in the same diagram. For example, <<System>> and <<MAU::System>> are
equivalent stereotypes for the MAU-Profile;

• Using UML classes: MAU-Profile rules for using classes are the same as those
stated in UML 2.0 specifications. A class is the basic element or model element
that can be used to represent any domain element;

• Using UML components: In Software Engineering context a component
represents a modular, deployable and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces. In the military
systems context, a component instance is a real world part of a system (or system,
or SoS) that is modular, deployable and replaceable. It encapsulates
implementation and exposes a set of interfaces. A component may include other
UML components, nodes and classes;

• Using nodes: In Software Engineering context a node is a runtime physical object
that represents a computational resource or platform, generally having memory
and processing capability, upon which components may be deployed. In the
military systems context, a node is a real world resource element or platform that
supports other domain elements. A node may include other UML nodes,
components and classes;

• Using packages: In Software Engineering context a package is a grouping and
structuring of model elements. A package cannot be instantiated. In the military
systems context, a package is a logical way of grouping UML elements that may
represent any domain elements;

• Using instances of stereotyped UML elements: Instances of any UML elements
may be stereotyped by the name <<instance>>. If a UML class is stereotyped
with the name <<System>> then <<System Instance>> is the stereotype name for
its instance;

• Using “logical” UML 2.0 diagrams: Stereotyped UML elements may be used
within any standardized logical UML 2.0 diagrams (class, objects, state,
sequence, collaboration and activity diagrams). Some diagrams may have to be
modified to meet System Engineering needs. For instance, with MAU-Profile it
should be possible to use node instances in sequence diagrams to depict systems’
chronological activities;

• Using “physical” UML 2.0 diagrams: Stereotyped UML elements may be used
within any standardized physical UML 2.0 diagrams (components and
deployment diagrams). Some diagrams may be modified to meet System
Engineering needs;

• Generating computational code: Stereotyped UML elements (like classes) will
not become computational code if they are not pure software.

The object-oriented paradigm is a generic concept that is often applied in Software

Engineering, but that is still valid while modeling any kind of systems. Objects will have
a state, behaviour and identity. The behaviour may depend upon the state and the state
may be modified by the behaviour. Inheritance is possible among hierarchical
representation of domain elements (or systems, SoS). For instance, systems like military
tank and jeep may inherit from the class Vehicle. Vehicle is a class showing the
commonalities between tanks and jeeps (Figure 7). Polymorphism is also possible among
hierarchical representation of domain elements (systems, SoS). As an example, Figure 7
illustrates a person driving a vehicle. When the drive operation is “called”, the operation
to be “executed” depends on whether the object used is a tank or a jeep.

Person
Vehicle

{abstract}

Tank Jeep

Drive() Drive()

Drive() {abstract}

Drives

Figure 7 Inheritance and polymorphism in military systems context

Using UML, these modeling conventions, the list of stereotypes and tagged-values it
is possible to model any kind of military system. Any stereotype name can be used and
re-used as needed to characterize UML elements. Stereotype names should not be used as
tagged-values.

3.3 Example of Utilization

 This section presents three examples of UML class diagrams (Figures 8, 9, and
10) depicting complex military systems in the context of Capability-Based Planning.
These examples do not express the exact reality of the present or the future of the
Canadian military acquisition, nor are they complete. They are simple examples showing
the use of the MAU-Profile. In these figures, a class is represented by a single rectangle
for clarity purposes and stereotype names are used to give classes more specific semantic.
The eventual parameterization of model elements would be achieved by the use of one or

many tagged values (tagged-values are not shown in these examples, for clarity
purposes).

 Figure 8 shows a strategic view depicting the architecture of an acquisition
complex system. The top-down Capability-Based Planning is partly present in this
diagram. High-level managers (like Ministers and Assistant Deputy Minister) define the
Government Strategic Directions (recall Figure 1) that are used by military, industrial and
academic organizations (performing acquisition) to identify Capability Gaps and then
identify options. These architectures are composed of systems (people, processes,
technologies and materiel) that form complex systems like SoS when they collaborate to
accomplish their missions.

Acquisition
<<Phase>>

Architecture
<<As-Is>>

Architecture
<<To-Be>>
<<Option>>

Organisation
<<Military>>
<<Industry>>

<<Academic>>
<<Acquisition>>

Training
<<Collective>>

Scenario
<<Collective>>
<<Exercice>>

System
<<InTheField>>
<<InTheLabs>>

Made of

Made of

Conceive

People

Processes

Technologies

Materiels

Define and
use

Use

Validation
<<Exercise>>

<<InTheLabs>>

Complex System
<<InTheField>>
<<InTheLabs>>

System

SoS

Form

Form

Involve

Capability Gap
<<Need>>

Used to
identify

Development
<<InTheLabs>>

Utilisation
<<InTheField>>

Implementation
<<InTheLabs>>
<<InTheField>>

Dispose
<<InTheLabs>>

Realise

Government
Strategic

Directions

Used to
identify

Identify and
describe

Lesson
Learned

<<Exercice>>

Inspired
by

Inspired by

Conceived
during

Manager
<<High-Level>>

<<Minister>>
Define

Identify and
describe

N

N

1..N

1..N

1..N1..N

1..N

1..N 1..N

1..N

1..N

1..N

N

1..N

1..N1..N

1..N

1..N

Collaborate
with

1..N

Figure 8. A hypothetical military acquisition complex system (strategic)

In this example, organizations performing the acquisition phases conceive the
collective Training by defining and using Scenarios (or courses of actions); these are
inspired by past Lessons Learned. The collective Training involves Systems; it is
conceived during the Acquisition phases. This high-level (enterprise) diagram can and
must be refined to further model SoS and its systems.

Figure 9 shows more details related to Organizations and collective Training
elements (Figure 8). In this diagram, new stereotyped classes are used to model these
elements with more details (and associations between them). Using a CASE tool, it
should be possible to decompose one class into its many sub-classes using a hierarchical

structure. Figure 9 shows an example of this by decomposing the Scenario class (Figure
8) into other classes (that are contained in Course of Actions class).

Organisation
<<Military>>
<<Industry>>

<<Academic>>

Use

Development
Team

<<Acquisition>>

Conception
Team

<<Acquisition>>

Tactical
Team

<<Exercice>>

Training Team
<<Collective>>
<<Exercice>>

C4ISR System
<<InTheField>>
<<Exercice>>

<<InTest>>
<<SoS>>

Capability
<<InTheField>>
<<Exercice>>

Realise

Course of Actions
<<InTheField Exercice>>

:Lessons Learned
<<InTheField Exercise>>

:Part #1
<<Action>>

<<HL>>

:Part #2
<<Action>>

<<HL>>

:Part #3
<<Decision.>

<<HL>>

:Result #1
<<Result>>

:Result #2
<<Result>>

:Event #1
<<Event>>
<<LLrnd>>

:Event #2
<<Event>>
<<LLrnd>>

:Event #3
<<Event>>
<<LLrnd>>

:Event #A
<<Event>>
<<LLrnd>>

:Event #B
<<Event>>
<<LLrnd>>

:Event #C
<<Event>>
<<LLrnd>>

:Fact #1
<<Result>>
<<LLrnd>>

:Fact #2
<<Result>>
<<LLrnd>>

Gen.

Generate

LLinkLLink

CLink

CLink

CLink

CLink

Resulted in

Resulted in

Guide
<<Collaborate>>

Guide
<<Collaborate>>

Train

Use
Monitor

<<RealTime>>
Monitor

<<RealTime>>

Is based on

Monitor
<<RealTime>>

Generate

New Lesson
Learned

<<InTheField>>
<<Exercice>>

Is transferred to

Use

Conceive

Conceive

<<Collaborate>>

1..N

1..N 1..N

1..N
1..N

1..N

1..N

1..N

1..N 1..N

1..N

1..N

N

N

N

N

N

N

1..N

:Part #5
<<Action>>

Analysis &
Treatment

<<InTheLab>>
<<Work>>

Is
integrated

in

LLink

:Part #4
<<Action>>LLink

Figure 9. A hypothetical collective training architecture (strategic and operational)

Figure 9 gives a clear indication that Conception Team(s), Development Team(s),

and Training Team(s) must collaborate to perform collective training; they form a SoS.
The definition of the types of collaboration that must exist between teams could have
been depicted in this figure by adding the appropriate tagged values to the associations.
For instance, these tagged values could make reference to the standard(s) or frameworks
that would have been used to standardize collaboration models and descriptions. These
standards could have been defined by UML and the MAU-Profile. In this example,
Conception Team(s) and Development Team(s) conceive the Scenarios (or Courses of
Actions), and then Training Team(s) uses them to train Tactical Team(s). The conception
of these Scenarios is inspired from the Lessons Learned from past experiences. When put
into action, the collective training of Tactical team(s) involve the use of the developed
SoS (here it is a C4ISR SoS) in field exercises. Delivered Capabilities are monitored in a
real-time mode by Training Team(s). New Lessons Learned may then be generated,
analyzed, treated and possibly kept for future uses.

 In this simple example, Courses of Actions are made of a suite of high-level
“Parts” (corresponding to sets of scoped actions) defining what should be achieved
during the exercise. These are linked by logical link (LLink) associations. At some point

in time, a decision must be made for the exercise to be conducted toward the appropriate
direction (Part 3 of Course of Actions). Lessons Learned inspire this decision from past
experiences for better results. Note that the Lessons Learned takes the form of instances
in this diagram. They are depicted as a concrete set of two past Lessons Learned
involving events and final results.

 When both Tactical Team(s) and C4ISR systems are fielded, they form a SoS of
type D (recall Figure 1). Figure 10 gives more details of the C4ISR System from Figure
9. This class diagram shows that the C4ISR complex system is made of a Coordination
Cell, a Head Quarter Communication Node and a Brigade HQ Cell. The Brigade HQ Cell
is composed of a Plan Cell, an Ops Cell, a Command Cell and a HQ Server Cell. Further
decompositions of these classes into new UML diagrams would provide more details of
the architecture.

:Brigade HQ
<<InTheField Exercice OperationalLevel SystemLevel>>

:Coordination Cell / ASP Cell :HeadQuarter
Communication Node

<<Node>>

Communication Link
<<IP RF>>

Laboratory
<<MobileLab Transport Vehicle>>

:System #1
<<System>>

:System #2
<<System>>

:System #3
<<System>>

:Documentation
<<Database>>

<<Oracle>>

:Stm Interface 1
<<Database>>
<<Interface>>

:Knowledge
<<Database>>

<<Oracle>>

SCIF Systems
<<???>>

:System #A
<<???>>

:TCV
<<Vehicle>>

<<Land>>

:IRRV
<<Vehicle>>

<<Land>>

:Brigade HQ Cell

:HQ LAN
<<Network LAN>>

Communication Link
<<IP RF>>

:Plan Cell
<<Node Military Vehicle>>

Plan Cell Systems

:System 4
<<System>>

:System 5
<<System>>

:Command Cell
<<Node Military Vehicle>>

Cmd Cell Systems

:System 6
<<System>>

:System 7
<<System>>

:Ops Cell
<<Node Military Vehicle>>

Ops Cell Systems

:System 8
<<System>>

:System 9
<<System>>

:HQ Server
<<Node Military Vehicle>>

HQ Server Systems

:ODB #Z80
<<System>>

:Stm Int #2
<<Interface>>
<<System>>

Communication Link
<<IP RF>>

:System #10
<<System>>

:System #B
<<???>>

Figure 10. A hypothetical C4ISR architecture (operational and system)

Figure 10 makes use of the UML graphic element “package” to group model
elements that are logically grouped in real life. The Laboratory package is, for instance,
depicted as an assemblage of systems that are gathered together to accomplish specific
missions or functions. Here, the stereotypes “MobileLab”, “Transport”, and “Vehicle”
were added to this package to specify that it takes the specific form of a transport vehicle.

 These three examples (Figures 8, 9, and 10) are related to the same hypothetical
acquisition system, they should be part of the same architecture description. If
associations between classes are not always shown in one class diagram, holism suggests
that all associations between classes must be modeled and captured in the whole
architecture description (within the CASE tool database). For instance, stereotyped
associations or links between the 1- the Capability Gap class (Figure 8) for a mobile
laboratory, 2- the detailed associated requirements (not shown), and 3- the Laboratory
package (Figure 10) should be captured in the CASE tool database.

4 Conclusion

The work currently performed at DRDC Valcartier regarding the achievement of a
UML profile for the description of military architectures in the context of Capability-
Based Planning was described in this paper. Considering the transformation affecting
military affairs and complexity associated to military systems, a review of contexts
within which the profile will be used had to be done and presented. The management of
military acquisition using the new Capability-Based Planning involves an enlargement of
traditional System Engineering perspectives that was used in threat-based planning. An
approach that considers mature engineering disciplines with new theories and that allows
the production of holistic architectural descriptions at enterprise level appears as a
potential solution in the context of Capability-Based Planning. In this context,
architecture descriptions must allow the representation of any relevant concepts and links
between them, no matter the domain or the project. The UML modeling language with
the MAU-Profile was presented as a potential solution to this problematic.

There are many advantages of using our dynamic definition of system (and of SoS)

and of using the structure of SoS that was presented (Figure 2). One of them is that some
of the methodologies that will be identified and defined to address complex problems
associated to a specific kind of SoS may potentially be re-used to address the same kind
of problems for other kinds of SoS. The reason for this is that even if SoS are of different
kinds, they are showing the same general characteristics. They are formed of independent
collaborative systems, their behaviours are often non-linear, non-deterministic and they
show hard to understand, to predict, and to control emergences. Actually, the Canadian
acquisition system could be considered as forming an overall enterprise complex system
that could be considered and optimized as a whole.

The language used to describe and model such business complex systems should be

sufficiently generic to include any kind of concepts and links between them. The use of
the UML and MAU-Profile will contribute to favour holism by providing a language that
will allow the modeling (and the linking) of any aspects of complex systems at enterprise
and project levels. It might contribute to lower risks that are associated to architectural
changes by providing all stakeholders with complete, adapted and linked information.
This linked information will contribute to make their decision processes more efficient
and effective. The management and optimization of military acquisition projects at higher
level (at CBP level; Figure 3) may be facilitated by the cross-exchange of any relevant
information and knowledge among involved domains or projects. This should be

achieved by insuring completeness, coherence, consistency, and synchronization of the
whole enterprise architecture description.

 Often, human factors are not integral part of architecture descriptions. Even if

people respect well-established processes and doctrine, they may give simple SoS strong
nonlinear character. Such human-influenced systems that collaborate together still act as
independent systems. They show interactions that give SoS emergent behaviours that are
neither fully predictable nor easily repeatable (non-deterministic). They depend on initial
conditions and environments that are often hard to measure and reproduce. The MAU-
Profile should allow the modeling of such factors.

References

Araujo, T. and J. Caraca, 1999. Evaluating Complexity in Hierarchically Organized
Systems, Proceedings of the III International Conference on Complexity in Economics,
ISEG.

C2IEDM, 2005. All documents relative to C2IEDM can be found at MIP web site:
http://www.mip-site.org.

CADM, 1998. C4ISR Core Architecture Data Model (CADM), Office of the Assistant
Secretary of Defence, Department of Defence, US., Version 2.0.

Chen, P. and Clothier, J., 2003. Advancing Systems Engineering for Systems-of-Systems
Challenges, Journal of The International Council on Systems Engineering, 6, 3, pp. 170-
183.

Cook S.C., 2001. On the Acquisition of System-of-Systems, Proceedings of the INCOSE
Annual Symposium, Melbourne, Australia.

Cook, S. C. and N. Sproles, 2000a. Synoptic Views of Defence Systems Development, in
Proceedings SETE 2000, Brisbane, November 2000.

Cook, S. C. and N. Sproles, 2000b. Piecewise and Structural Views of Defence Systems
Development, in Proceedings SETE 2000, Brisbane, November 2000.

Couture, M. and Duval, A.. 2005. On the Building of a UML Profile For the Description
of Army Architectures In System of Systems Context. TR 2005-001 DRDC-Valcartier.

Corbett, D. W., 2004. Joint Requirements – It’s Time To Pay The Piper. Canadian Forces
College, MDS Research Project, CSC 30.

Couture, M., 2005. The MAU-Profile; a UML profile for the Description of Military
Architectures. Document in preparation.

Davis, P. K., 2002. Analytic Architecture for Capabilities-Based Planning, Mission-
System Analysis, and Transformation. RAND Corporation, MR-1513-OSD, ISBN: 0-
8330-3155-4.

DND, 2004a. Department of National Defense of Canada, White Paper.
http://www.forces.gc.ca/admpol/eng/doc/white_e.htm

DND, 2004b. Department of National Defense of Canada. Canadian Joint Task List and
PRICIE related information can be found in web site: http://www.forces.gc.ca.

DOD-AF, 2003a. Definitions and Guidelines, DoD Architecture Framework Working
Group, Department of Defence, US. Version 1.0, Volume I.

DOD-AF, 2003b. Product Description, DoD Architecture Framework Working Group,
Department of Defence, US. Version 1.0, Volume II.

DOD-AF, 2003c. Appendices, DoD Architecture Framework Working Group,
Department of Defence, US. Version 1.0, Volume III.

Hitchins, D. K., 2003. Advanced Systems Thinking, Engineering, and Management.
Arthech House, Inc. ISBN 1-58053-619-0, 469 pages.

IEEE-1471, 2000. The Institute of Electrical and Electronics Engineers (IEEE), IEEE Std
1471 – IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems, New York, NY.

Keating, C., R. Rogers, U. Resit, D. Dryer, A. Sousa-Posa, R. Safford, W. Peterson, and
G. Rabadi, 2003. System of Systems Engineering, Engineering Management Journal, 15,
3, pp 36,45.

Maier, M.W., 1998. Architecting Principles for Systems-of-Systems, Systems
Engineering, 1, 4, pp. 267-284.

Michaud, S. M., 2004. Lost… but making good time: The Urgent Need for a Canadian
Forces C4ISR Framework. Canadian Forces College, MDS Research Project, CSC 30.

Moti, F, 2000. Engineering Systems Thinking and Systems Thinking, Systems
Engineering, 3, 3.

OMG, 2004. All documents and specifications relative to UML, MOF, and other meta-
models can be found at: http://www.omg.org

Sage, A. P. and C. D. Cuppan, 2001. On the System Engineering and Management of
Systems of Systems and Federations of Systems, Information, Knowledge, and System
Management, 2, 4, pp 325, 345.

SYSML, 2004. Many documents on SYSML can be found at: http://sysml.org

SYSENG, 2004. Many documents on SYSML can be found at: http://syseng.omg.org

UML, 2004. Unified Modeling Language™ (UML®), Version 1.5, (see OMG, 2004).

Glossary

Capability: The term capability is used in this paper as a property that expresses the
ability of a SoS to perform a pattern of actions that will allow the accomplishment of a
mission.

Capability-Based Planning (CBP): Paul Davis of the RAND Corporation (RAND,
2004) defines the CBP as: “planning under uncertainty, to provide capabilities suitable
for a wide range of modern-day challenges and circumstances, while working within an
economic framework” (Davis, 2002).

System: a system is made of people (person, group, association, organization) that use
processes (doctrines, standards, methods), technologies (software, frameworks), and
materiel (physical tools, vehicles, etc) to transform input into output within a specific
context and under specific rules. The system provides functionalities the system must
achieve when put in action. Systems are recursive in nature. Structures of system are
allowed; system may contain or be composed of other systems. This definition considers
systems as being dynamic rather than static. It involves all its contributing elements,
which are acting in specific ways toward the realization of functions. Human factor is
thus considered as being part of system’s definition.

System of Systems (SoS): an assemblage of operationally independent systems that
collaborate with each other in order to get the ability to achieve a mission-oriented set of
actions that allow the realization of a global mission. This mission is understood and
shared by all systems. A SoS may be dedicated to the realization of a few pre-determined
missions. As for systems, SoS is an object of engineering in which collaborating systems
need to be considered as part of a whole while evolving over time. SoS are recursive in
nature, they are usually open as they are interacting with their environment(s), and they
have life cycles that are determined by life cycles of their associated systems.

Bibliography

Mr. Couture received a B.Sc. degree in Physics and a M.Sc. in Physical Oceanography
at the Université du Québec à Rimouski, Qc, Canada. After 8 years of M&S work at
Fisheries and Ocean Canada, he completed a M.Sc. in Electrical Engineering at Laval
University, Qc, Canada. In 2002, he joined Defence R&D Canada - Valcartier as a
Defence Scientist in the System Engineering and Architecture (SEA) Group, which is
part of the System of Systems (SoS) Section. His research interests are oriented toward
the engineering and design of military architectures in the context of complex systems.

