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Abstract:  Information is key to command and control.  Yet information alone is not enough;  information is 
neither the problem nor the solution when it comes to issues of command and control.  Use of information is 
essential.  That which is commonly called “information” generically exists in many forms, with each form 
having temporal implications.  Furthermore, with so much information readily available and increasingly so, 
we must develop better ways to combat information overload.  Interestingly, the cognitive process itself 
sheds much light on problems facing the information age and can provide insight into what is going on with 
information at a fundamental level.  In considering such a process, one should examine where information 
comes from, where it is going, what it’s nature is and how it is used.  This paper describes a signal-based 
perspective of information and how signals in general fuel the cognitive process.  More significantly, we 
introduce a novel framework for conceptualizing the cognitive process. 
 
We describe cognition and related topics at a high level and in simple terms using ordinary language.  Yet 
seemingly simple concepts, when combined and viewed a certain way, can take on significant meaning.  We 
present the concept of abstraction as one of two dimensions in our framework.  Here abstraction is viewed 
overall as a function of space or form, with signals ranging anywhere from concrete to abstract.  At one end 
of this spectrum are physical signals, for instance ones which are tangible and may readily be perceived by 
the senses.  At the other end of the spectrum are abstract signals, for instance ones which may be conceived 
or realized by the mind but lack physical form.  The second dimension in our framework represents time.  
Here the concept of generalization is portrayed overall as being a function of time or frequency, with signals 
ranging anywhere from data (time-sensitive, high frequency and least organized) to information to 
knowledge (time-insensitive, infrequently changing  and most organized).  In this dimension, signals tend to 
flow from many pieces of specific data (i.e., details) to fewer items having more significance (i.e., general 
knowledge).  We combine the concepts of abstraction and generalization within our approach to form a 
unique perspective of the cognitive process, with information at the core, suggesting that this perspective 
may facilitate the modeling of cognition. 
 



 

      1 

 
 
 
 
 
 
 

Framework for Modeling the Cognitive Process 
 
 

Paul S. Yaworsky 
Air Force Research Laboratory/IFSB 

Rome, NY 
 
 

Keywords: 
Cognitive Process Modeling, Cognition, Conceptual Framework, Information, Abstraction, Generalization 

 
 

 
1.  Introduction 
 
The word “cognition” is a derivative of the Latin word 
cognoscere, which means, “to come to know.”  From this 
definition we can see that cognition involves the creation 
and acquisition of knowledge.  This can lead to 
associating cognition with learning, and with 
understanding, and meaning and thinking and 
intelligence, and so on.  Trying to describe these terms, 
especially cognition and intelligence, leads to many 
difficulties, not the least of which are various definitions 
and perspectives.  While we do see similarities and 
differences among the processes of cognition and 
intelligence, we will mainly use the term cognition here at 
the expense of (our) intelligence.  We will describe 
cognition and related topics using simple concepts and 
ordinary language.  But first we try to place cognition 
within our overall perspective of intelligence. 
 
We view intelligence to be an all-encompassing process 
that involves mind and brain, cognition and behavior, to 
include all mental and physical aspects of brain activity.  
For the purposes of this discussion, we view cognition to 
be an underlying process of intelligence, and especially 
one which helps accomplish knowledge acquisition and 
learning.  We will not discuss here the differences 
between cognition and intelligence, nor will we discuss 
much about learning.  However, within our perspective 
we view cognition to be a sub-process of intelligence that 
involves the transformation of raw data signals into 
information signals and then into knowledge signals.  
Very closely related to cognition is generalization, a 

process by which signals may vary from specific to 
general at any point in space and thereby constitutes the 
state of signals as a function of time.  We consider 
generalization to be a fundamental dimension of 
cognition.  Another fundamental dimension of cognition 
identified here is abstraction.  In the abstraction 
dimension, signals may vary from concrete to abstract at 
any point in time and constitute the representation of 
signals as a function of space.  Together abstraction and 
generalization “frame” our perspective of cognition in a 
two-dimensional sense and may be used as a framework 
for modeling the cognitive process. 
 
Our framework consists of many seemingly simple 
concepts.  Yet when combined a certain way, these 
concepts take on significant meaning within our 
perspective.  We describe basic concepts using common, 
everyday language.  We define important terms to help 
clarify our perspective and give examples to help 
illustrate our meaning.  We even discuss meaning itself 
with respect to cognition and intelligence, and suggest 
how meaning contributes to understanding within our 
framework.  With this description, we will have combined 
many simple concepts to form the shell of a model of a 
tremendously complex process – the cognitive process. 
 
From an information processing point of view, we are 
interested in how information gets transformed into 
knowledge in support of intelligence.  This transformation 
process is literally the basis of cognition.  Furthermore, 
we view intelligence as being an overarching process of 
cognition, with both processes being orderly and signal-
based.  We propose our framework as a way of portraying 
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this order and viewing the signal-based transformations in 
space and in time.  We aim to understand portions of 
intelligence and to describe them as clearly as possible at 
a high level.  Once fundamental concepts are realized and 
described, they may better be implemented using 
modeling and simulation technology.  We have a long 
way to go for this.  Given the significance of abstraction 
and generalization in our framework, two major 
challenges here are to formalize abstract concepts and to 
be as specific as possible while describing general 
concepts.  Such is the nature of the beast.  Our framework 
directly reflects these challenges.  We have benefited 
from the work of many others in various disciplines while 
forming our unique perspective.  We acknowledge that 
this work represents a mere sampling of the wealth of 
knowledge available on this complex topic.  
 
The task before us represents a formidable challenge, one 
that involves the integration of information, intelligence 
and computers.  Each of these entities is the subject of 
entire disciplines.  Information, loosely speaking, is the 
lifeblood of intelligence.  Intelligence is the product of the 
mind.  And automation, as used here, represents the 
relatively recent capabilities enabled by the electronic 
computer.  Our aim is to examine these and other 
disciplines while focusing on one piece of the intelligence 
puzzle from a modeling point of view.  The piece we 
focus on is a framework, with details omitted.  We have 
developed our conceptual model with the perspective that 
intelligence is an orderly, signal-based process involving 
complex transformations in space and time.  Since we are 
ultimately dealing with a model of intelligence, and since 
all models are approximations of reality, we are not 
interested in developing an exact copy of natural 
intelligence.  We aim to provide an approximation, a 
conceptual model, a basic description of cognition as part 
of the intelligence process.  Most of the concepts 
presented in this modeling framework are relatively 
simple, and they are not new.  However, as combined 
they form a new perspective on a theory of mind that may 
seem unbelievably simple at first.  Our description is a 
contribution, however small, to the formidable task of 
modeling intelligence. 
 
2.  Definitions 
 
We begin with a set of definitions.  Admittedly, the terms 
we use can be defined in many different ways, and 
typically are.  We merely provide these definitions as a 
basis of discussion.  Intelligence is defined as the ability 
to transform a variety of signals into knowledge and to 
effectively apply that knowledge in a changing 
environment.  Cognition is defined as the ability to 
acquire knowledge, or the ability to know and understand.  
As such, cognition is viewed as a sub-process of 

intelligence.  Understanding is the set of realizations of 
signal relationships that occur as part of cognition.  These 
realizations involve the coupling of underlying physical 
structure (i.e., brain) with overlaying mental function (i.e., 
mind).  Meaning is the result of the process by which 
signals are assigned values.  Signals obtain value or 
meaning within the mind-model by associating activated 
formal structures with activated abstract functions using 
dynamic links.  Learning is defined as the acquisition of 
knowledge.  This implies first the ability to cognize signal 
relationships, then to make associations among them and, 
perhaps most importantly, to recognize them later.  
Learning causes change, and that change is recorded in a 
lasting structure that dynamically supports the functions 
of intelligence.  Finally, information is a generic term 
used to describe signals that interact in many ways and 
are transformed during the intelligence process.  The term 
information is often used elsewhere as being synonymous 
with data, knowledge and other forms of signals.  We 
place the term information at the center of our conceptual 
framework and will distinguish our use of terms within 
the context of this framework. 
 
3.  A Conceptual Framework for Modeling 
the Cognitive Process 
 
We will describe our conceptual framework using 
graphical examples to help illustrate main points.  We 
form the two dimensions of our framework using the 
concepts of abstraction and generalization, as shown in 
Figure 1.  In the abstraction dimension, signals are 
considered to be a function of space.  This means that in 
this dimension signals must conceptually take on physical 
shape or form, varying anywhere from concrete to 
abstract at any point in time.  The overall flow of signals 
in this dimension tends toward increasing abstraction.  
Representation of signals as a function of space becomes 
a major modeling issue.  We will discuss abstraction more 
later in this section.  Generalization is used as the other 
dimension in this conceptual framework, with signals 
being a function of time, or more literally, frequency.  In 
this dimension, signal types can vary anywhere from 
specific to general at any point in space and their 
frequency designates their relative state of processing.  
This means that as signals become transformed during the 
cognitive process, the frequency of resulting signal-states  
can vary anywhere from quickly changing (data) to those 
which change less frequently (information) to states 
which are very slow to change (knowledge), if they 
change at all.  This relative state of processing  is another 
major modeling issue.  The overall flow of signals in this 
dimension is toward increasing generalization.  This 
aspect of cognition will also be described more later in 
this section.   
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Figure 1.  A conceptual framework for modeling the cognitive process. 
 
 
3.1.  Signal-Based Approach 
 
When we use the term signals in our description of 
cognition, we imply mental signal activity, or signal 
activity modeled after that which must occur in the brain.  
Yet in reality, mental signals have physical characteristics 
as well, consisting of frequency, phase and amplitude 
components.  In this overview we provide no details on 
the physical or mathematical nature of signals.  And while 
much is known in various disciplines concerning neural 
signals and their related processes, too little is known 
about the actual nature of mental signals and especially 
the implications of these signals with respect to 
underlying cognitive processes.  Nonetheless, we consider 
mental signals and their components as raw materials for 
cognition.  Within our signal-based approach to 
automating intelligence, we acknowledge that order and 
organization must be present in mental signals and serve 
as a natural and fundamental part of cognition.  We 
realize that to model cognition means to exploit its 
underlying order and organization.  Naturally, our signal-
based approach draws from many disciplines.  In general, 
we consider signals, a more generic term for what the 
concept information represents, to be the lifeblood of 
intelligence. 
 

Using this conceptual framework, we view signals from 
an “information processing point of view.”  By this we 
mean that, while the signals themselves may generically 
be termed information or data or whatever, their relative 
state of representation and processing takes on special 
meaning with respect to cognition and the overall 
intelligence process.  In the context of our framework, 
information is just one of several signal-states within the 
cognitive process.  Furthermore, as part of the framework, 
information may exist at various levels of abstraction.  
Granted, many of the concepts presented here are 
themselves abstract and consequently difficult to explain, 
but this framework does provide a useful way of viewing 
cognition.  In time, this framework will be improved upon 
in support of the many details needed to model cognition.   
 
3.1.1.  Symbol and Direction for the Framework 
 
A basic symbol used here to represent this conceptual 
framework is shown in Figure 2.  With only three states 
highlighted in one dimension (Data, Information and 
Knowledge), the overall framework is represented using a 
rectangular symbol with nine regions.  For an even 
simpler symbol of the framework, the nine regions may 
be depicted with no states labeled. 
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Figure 2.  A symbol used to represent this conceptual 
framework. 

 
The next illustration (Figure 3) shows cognition as a 
process that proceeds generally from left to right with 
respect to the overall conceptual framework.  We choose 
this direction to reflect the significant role “knowledge” 
plays in the cognitive process.  Later we discuss signal-
flow in the abstraction dimension.  While this description 
may seem overly simple, the proposed progression does 

help to constrain the cognitive process from a modeling 
standpoint by identifying an overall direction for the 
process.  We do acknowledge that this work is merely a 
modeling effort, and that the human brain involves much 
more complex behavior, rich connectivity, feedback and 
all sorts of dynamic signal activity occurring in many 
dimensions. 
 
3.1.2.  Input and Output 
 
Before we discuss what goes on inside the framework, we 
briefly discuss what goes on outside with respect to the 
cognitive process (i.e., inputs and outputs).  Given the 
overall perspective as described above, signals enter from 
the left, with the majority of input signals defined as data, 
the least organized type of signals (Figure 4).  Data 
signals have the highest frequency within our framework, 
which means that data signals vary quickly and its 
components are the most time-sensitive of all, relatively 

speaking.  Note that our use here of the term data is quite 
different from more conventional uses such as in the 
terms “data processing” and “data analysis.”  However, 
the main points here are that data signals are the least 
organized, have the highest frequency and comprise the 
majority of input signals.  At the other end of the process, 
signals tend to be output as knowledge, the most 
organized of the three signal-states.  Relatively speaking, 
knowledge signals have the lowest frequency, which 
implies that knowledge is slow to form and slow to 
change, if it changes at all.  Furthermore, while cognition 
must involve iterative processes, knowledge does not 
always have to be output but may be stored within the 
mind-model for future activity, whether that activity be 
internal (as in thinking) or external (as in 
communication).  Finally, information is the term used in 
the center of the framework (see Figure 1).  As such, 
information will serve as the intermediate state between 
data and knowledge in the generalization dimension, and 
also as the intermediate form between abstract and 

concrete in the abstraction dimension.  Whether the term 
information or data or knowledge is used to describe input 
to or output from a model is a relative issue.  However, 
terminology does take on special significance with respect 
to modeling cognition due to implications concerning 
meaning. 
 

 

Figure 4.  Data as Input and Knowledge as Output. 
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Figure 3.  Overall direction of cognition within the framework.
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3.2  Abstraction 
 
We turn now to signal activity within the conceptual 
framework.  In a two-dimensional sense, the vertical 
dimension of our framework represents space.  We are 
faced with the issue of describing the concept of space in 
terms of a single dimension, here called the abstraction 
dimension.  That is, the three dimensions of “space” are 
treated as a single entity;  this abstraction of “space” is a 
major modeling issue in it’s own right.  In any case, we 
begin by describing abstraction as one of two dimensions 
within our conceptual framework.   
 
Signal abstraction involves a hierarchy of signal forms in 
the vertical dimension.  The signal forms are relative, 
varying anywhere from concrete to abstract (Figure 5).  
At the bottom of the hierarchy are concrete signal forms, 
but similar descriptive terms include:  formal, certain, 
absolute, fundamental, simple, basic, primitive, practical, 
principle, factual, sensory and machine-like.  These terms 
all have physical connotations and thereby represent 
physical aspects of modeling reality.  At the other end of 
the spectrum are abstract signal forms, but similar terms 
include:  conceptual, informal, apparent, complex, 
combined, notional, seeming, cognitive, ideal and 
intangible.  These terms have more of a mental 
connotation to them, and thus represent mental aspects of 
modeling reality.  Throughout the history of artificial 
intelligence (and other disciplines as well), the abstract 
nature of intelligence has proven to be most difficult to 
model.  Yet from a modeling perspective, we cannot 
ignore the significance of abstraction within the 
intelligence process.   
 

 
 

Figure 5.  Abstraction – internal signal transformations in 
the vertical dimension. 

 
A simple example of cognitive activity having three levels 
of abstraction includes thinking, speaking and writing.  
Naturally, all three of these activities involve thinking.  
Later we discuss how the various levels of abstraction 
may contribute to thinking, but using this example we can 
at least distinguish between three levels of abstraction 
within our framework.  Ordinary or plain thinking (with 

no output involved) happens to be the most abstract (or 
least formal) activity of the three mentioned.  This places 
ordinary thinking in the upper level of the framework.  
However, when we express ourselves using speech, we 
must output what is “on our mind” in a way that is more 
formal and more concrete than ordinary thinking.  This 
places speaking somewhere below the level containing 
ordinary thinking within our abstraction hierarchy.  The 
third level of abstraction in this example, writing, resides 
in the lowest level of the framework.  With writing we 
express what is “on our mind” in the most formal (or least 
abstract) fashion of all, by definition.  This example 
illustrates the spatial hierarchy of abstraction within our 
framework and highlights the apparent differences 
between these three mental activities, but also implies that 
these activities are intimately related. 
 
3.2.1.  Flow Within the Abstraction Dimension 
 
We have talked about how signals take on physical shape 
or form in the abstraction dimension. We have also stated 
that the overall flow of signals in this dimension tends 
toward increasing abstraction.  We choose this direction 
from a high level perspective by considering what 
happens outside the mind-model as well as inside.  The 
region outside the mind-model is called the environment 
or external world, which obviously has an effect on the 
model with respect to signal inputs and outputs.  In the 
external world, signals are physical and time-sensitive by 
their very nature.  Our mind-model must be able to accept 
these signals as they occur (i.e., in whatever form they 
exist).  Thus, in the abstraction dimension, signals enter 
the mind-model mainly in a physical sense.  These signals 
are then processed and transformed into levels of 
increasing abstraction.  This results in an overall signal 
flow which proceeds from concrete (formal) to abstract in 
this dimension.  Granted, this is a high level perspective, 
but it is consistent with our overall framework, and this 
perspective literally helps frame underlying representation 
issues. 
 
As part of cognition, we realize that abstraction is an 
exceptional mental ability.  The ability to abstract in 
humans is believed to exceed that of all other animals on 
the earth, by far.  This is in sharp contrast to the 
exceptional sensory abilities of most animals, believed to 
exceed those of humans in many cases, by far.  A 
significant part of the human cognitive process involves 
taking physical, sensory signals from the environment and 
transforming them into higher and higher levels of 
abstraction within our mind.  With respect to this 
modeling task, we acknowledge that an abstraction 
hierarchy exists by making it part of our cognitive 
framework. 
 

Abstract

Concrete
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3.2.2  Function and Structure 
 
The next conceptual leap we make within our framework 
involves associating “abstract” with “function” along the 
top and “concrete” with “structure” along the bottom, as 
shown in Figure 6.  In this figure, the arrows imply 
equivalence.  This association may appear trivial or 
contrived, but again it serves a useful modeling purpose.  
One of our main goals here is to characterize the cognitive 
process such that we may better model it using computer 
technology.  A major difficulty in modeling cognition and 
intelligence involves resolving complex relationships 
between mental function (i.e., mind) and physical 
structure (i.e., brain).  By associating abstract with 
function and concrete with structure within our 
framework, we touch upon this great paradox of 
intelligence, albeit at a very high level.  Our motivation at 
this high level is simple:  to realize and describe concepts, 
to stimulate new ideas and to foster the development of 
theories in support of modeling the cognitive process. 
 

Figure 6.  Associating levels of abstraction with function 
and structure. 

 
Given that structure resides at the bottom of our 
framework as shown in Figure 6, we acknowledge this 
implied structure must come 
from somewhere and, 
according to our perspective, 
this structure comes from 
learning.  That is, the 
learning process produces 
some kind of lasting 
structure (i.e., memory).  
Granted, as perceived in the 
brain, this so-called structure 
cannot be rigid or fixed but 
must be dynamic in nature;  
but structure exists 
nonetheless.  To go one step 
further, function is enabled 
by using that which is 

learned (i.e., by using existing structure).  To be sure, 
learning not only produces structure but also enables 
function, and the distinction between function and 
structure gets very fuzzy with respect to learning and 
cognition.  Suffice it to say that having something 
physical (i.e., structure) is not important if there is no 
ability to use that “something” effectively (i.e., function).  
In considering any model of the cognitive process, we 
must come to grips with the age-old paradox concerning 
function and structure, two very real aspects of 
intelligence.  Unfortunately, humankind has not yet 
resolved this paradox.  So-called hard sciences like 
physics, chemistry and biology have not yet fully 
embraced the abstract nature of mental function.  
Likewise, so-called soft sciences like psychology, 
philosophy and sociology have not yet fully embraced the 
physical and concrete nature of brain structure.  Our 
framework merely provides a conceptual bridge between 
this metaphorical gap. 
 
3.2.3  Learning and Recall 
 
While we acknowledge that learning plays a key role in 
the cognitive process, we must also acknowledge the 
importance of signal recall as part of the process.  What 
we learn is literally of no use unless we can recall it 
appropriately.  Within a modeling system, learning begins 
with the presentation of input signals, as discussed earlier, 
resulting in system change and the formation of lasting 
structure (memory).  Cognition is a complex byproduct of 
learning which occurs in an “intelligent system” only after 
much learning has taken place.  Note that while cognition 
as used here occurs (arguably) near the end of the 
intelligence process, we acknowledge the process as being 
iterative in nature.  Recall can only occur after 
presentation and after cognition, and as the prefix re-  
implies, recall  literally involves signal re-presentation 
and re-cognition (Figure 7).  Our signal-based perspective 
acknowledges the significant iterative relationship 
between learning and recall. 

Abstrac t Func tion

Con crete Structure

Learning Recall

Presentation
Cognition

Re-Presentation
Re-Cognition

Figure 7.  Learning and recall as part of the iterative cognitive process.
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3.2.4  Meaning and Understanding 
 
The next two concepts we discuss are meaning and 
understanding, obviously important with respect to 
intelligence.  The word understanding implies that some 
kind of foundation or structure is needed.  Furthermore, 
the activity implied by understanding is one that involves 
“making sense” out of signals present.  This means 
several things from our perspective.  First, to understand 
something, we must recognize the inherent order and 
organization present in signals (i.e., we must recognize 
signal structure).  We must also recognize the potential 
use of such signals (i.e., we must recognize signal 
function).  Then we must link function to structure.  Once 
we realize or “make real” the links between structure and 
function within our mind-model, the result represents 
signal meaning.  Meaning occurs by associating formal 
physical constructs with abstract mental counterparts.  In 
a more global sense, the total set of activated physical 
constructs in the brain coupled with the set of activated 
mental functions which “makes use” of those constructs 
represents understanding.  When we perceive something 
and it “makes sense” to us, part of what must occur is for 
activated abstract concepts to resonate with activated 
physical constructs within our mind-model.  
Understanding and meaning are the result of realizing and 
activating resonant links within the neural network.  The 
level of understanding depends upon the nature of signals 
“realized” and the nature of resulting signal resonance. 
 
After providing such a brief description of meaning and 
understanding, we realize that we have come up short in 
very many respects.  However, it is important to reiterate 
that, for modeling purposes, we are after a high-level 
description here.  Over time this description must be 
improved upon and details added.  But we emphasize that 
before any description can occur, the realization of ideas 
and concepts must occur.  That is, we must first realize 
concepts in our mind before we can model them external 
to our mind.  The risk we take here in simplifying this 
complex subject is offset by the potentially far-reaching 
benefits that come from modeling cognition. 
 
3.3  Generalization 
 
We now describe generalization, or internal signal 
transformations in the horizontal dimension of our 
framework (Figure 8).  From an information processing 
point of view, all signals involve oscillations or pulses.  
Thus the signals naturally contain frequency, phase and 
amplitude components and, as already mentioned, the 
composite signals may transition from data to information 
to knowledge, respectively, as a function of decreasing 
frequency.  Signals with the highest relative frequency, 
termed data here, happen to be the least organized.  In a 
modeling sense, signals ought to be processed according 

to a purpose or direction, and within our perspective an 
underlying purpose of cognition is to produce fewer 
signals containing a higher order or greater significance 
(i.e., to produce “knowledge”).  This highlights an 
important aspect of the generalization process.  As large 
amounts of data are input and processed in an intelligent 
system, the signals become more ordered and more 
organized (i.e., the signals literally come to be “in 
formation”).  However, the process does not stop there.  
Remaining signals may further be reduced, filtered, 
ordered and organized into knowledge.  This perspective 
offers a convenient way of viewing the cognitive process.   
 

Figure 8.  Generalization – internal signal transformations 
in the horizontal dimension. 

 
3.3.1  Signal Frequency and Period 
 
An example of relative frequency components of signals 
within our framework (using frequency of rotation) is 
given in Figure 9.  Using the analogy of interconnected 
gears, data is shown to be the smallest gear and as such 
must rotate much faster than information to remain 
engaged in the cognitive process.  Likewise, information 
must rotate more quickly than knowledge to remain 
engaged.  This example not only highlights the 
relationship of frequency components but also their 
relative significance within the cognitive process.  While 
the slowest frequency is associated with knowledge, the 
largest size as shown implies that knowledge carries with 
it the greatest significance. 
 
Given the importance of frequency components in our 
signal-based approach, and given the inverse relationship 
between frequency and time, the following points can be 
made concerning signals in the generalization dimension.  
Since data signals are assigned the highest frequency 
within our framework, these signals consequently have 
the shortest period or timeframe.  Information signals 
have an intermediate timeframe associated with them, and 
knowledge has the longest timeframe.  This implies that 
knowledge signals tend to change value least often, if they 
change at all.  Therefore, knowledge holds its value 
longer than data and information, and it follows that 

Specific General
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DATA  INFORMATION    KNOWLEDGE

Figure 10.  An illustration of signal hierarchy in the generalization
dimension.

knowledge is more significant than data or information.  
Consistent with our view of the cognitive process, we see 
generalization as a process that uses many data signals to 
produce fewer information signals and even fewer yet 
more significant knowledge signals.  Note that this many-
to-few progression within brain activity represents a 
natural tendency across many levels of brain function, 
from single neurons to neural clusters and even up to 
consciousness. 
 
3.3.2  Signal Sequencing 
 
Another consequence of generalization in our signal-
based approach has to do with signal sequencing.  By 
sequencing we mean the orderly combination of signals 
over time.  An example of this is found in language.  
Letters of the alphabet are used to produce words, and the 
letters may be arranged in many possible ways.  But for 
any given word, a specific sequence of 
letters must be followed.  Furthermore, 
words may possibly be arranged in many 
different ways, but for any given phrase or 
sentence, the exact sequence of words 
matters, thereby fixing their meaning (i.e., 
their meaning depends on the use of formal 
structures).  This example serves as a simple 
reminder of the important role sequencing 
plays in the cognitive process.  Out of the 
very many sequences of signals that may 
possibly occur within a mind-model, for any 
given sequence, specific forms become 
activated, identified and associated with 
existing signal-states, thereby giving 
meaning. 
 
Even at more abstract levels, the signal-
sequencing concept may be used to reinforce 
the point that cognition tends to proceed 

toward the creation of knowledge, going from many 
specific constructs to fewer general ones.  For example, 
sequences of many specific sights and sounds combine to 
trigger abstract thoughts and ideas, and thoughts and ideas 
combine to form main points in the reasoning process.  
Again, we aim to exploit this in a modeling sense by 
recognizing the inherent hierarchy of abstraction within 
cognition and also by acknowledging the direction of 
signal flow as proceeding from specific to general in 
support of knowledge creation. 
 
3.3.3  Signal Hierarchy 
 
The inherent order and direction of the cognitive process 
naturally bring forth many interesting characteristics.  
One such characteristic with respect to generalization is 
shown in Figure 10.  Within the basic hierarchy given, 
many pieces of data combine to form fewer pieces of 
information, and information pieces combine to form 
knowledge.  Figure 10 shows only one piece of 
knowledge, and that piece is shown larger than the others, 
which implies that knowledge is more significant.  In the 
brain, neuronal processes are not so simple or clear-cut, 
but this concept is important nonetheless.  From a signal 
processing standpoint, data signals have the lowest 
amplitude and the highest frequency compared with 
information and knowledge, as already mentioned.  As 
signals are processed, filtered and combined, the end 
product is knowledge, which consists of signals having 
the lowest frequency and largest amplitude or 
significance, relatively speaking.  
 
 
 

LowMediumHi

Information KnowledgeData

Figure 9.  Analogy of gears and the cognitive process
highlights signal frequency relationships.
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3.3.4. Signal Filtering 
 
Another interesting characteristic is that much signal 
filtering must occur in support of underlying cognitive 
processes.  One way of illustrating signal filtering at a 
high level is shown in Figure 11.  Here many data signals 
having relatively low amplitude and high frequency are 
filtered into fewer information signals and then again into 
knowledge.  The amplitude or significance of the signal 
components is shown to increase along the way.  Thus 
knowledge consists of signals having the largest 
amplitude and lowest frequency, relatively speaking.  
This kind of filtering may be used to model processes at 
the neuronal level, but conceptually this filtering may also 
be used across many layers and dimensions as well.  As 
believed evident in the human brain, this filtering process 
could support a sophisticated modeling hierarchy having 
rich connectivity.  Of course, vast amounts of detail must 
be worked out with respect to signal filtering and then 
integrated into a cohesive model, which is no small task. 

3.3.5  Signal Fusion 
 
Another characteristic function of biological neurons we 
would like to model is signal fusion.  By fusion we simply 
mean a process that takes many input signals and fuses 
them together to produce a single output (Figure 12).  We 
consider signal fusion an important modeling function 
because, as already implied, biological neurons must 
perform a function similar to this.  The fusion concept is 
also consistent with the overall flow of signals occurring 
in both dimensions of this conceptual framework.  
Abstraction and generalization are both envisioned as 
involving signal fusion, with many input signals being 
combined to produce fewer output signals as part of the 

corresponding transformation processes.  Admittedly, 
details of the differences between fusion for abstraction 
and fusion for generalization must be worked out, but the 
fusion concept applies to both sub-processes nonetheless. 
 
3.4.  The Essence of Generalization 
 
As part of cognition, many data signals are processed into 
fewer information signals and then further into fewer 
knowledge signals.  Consequently, resulting knowledge is 
considered the most significant of all the signal-states in 
this progression.  Implicitly this means that as a result of 
all the underlying transformations, knowledge must 
contain the basic elements of data and information, as 
well as something more.  The cognitive process is such 
that it cleverly extracts the essence of data as it produces 
information, and then extracts the essence of information 
as it produces knowledge.  And a curious thing happens 
along the way.  As signals proceed from data to 
information to knowledge, nonessential elements in time 

are abstracted out while essential elements in space are 
maintained.  This implies that the essence of 
generalization is to produce knowledge*;  that is, to 
produce timeless, spatially concise versions of many 
specific signals.  This aspect of cognition is often taken 
for granted in everyday life.  Our generalizations tend to 
be overshadowed by the immediate nature of specific, 
sensory signals, and also by the near-term role 
consciousness plays in mental activity.  Nonetheless, the 
mind performs generalizations on a regular basis.  
 
 
____ 
*For the purpose of this paper 
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Figure 11.  An illustration of signal filtering. 
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Figure 12.  An illustration of signal fusion. 

 
3.5.  The Essence of Abstraction 
 
In a similar fashion, based on our previous discussion in 
the abstraction dimension, the elements of space or form  
become abstracted out as signals proceed in the direction 
of concrete to abstract.  This implies that the essence of 
abstraction is to produce concepts;  that is, to produce 
formless, temporally concise versions of many concrete 
signals.  The abstraction process tends to take many 
physical, formal signals and produce fewer yet more 
abstract versions of them.  This is a form of generalization 
as well, implying that the abstraction and generalization 
processes are inextricably entwined.  And similar to 
generalization, the abstraction concept is often 
overshadowed in everyday life with respect to cognition, 
making abstraction somewhat mysterious and 
counterintuitive, not to mention hard to describe.  
Considering the nature of our senses and the concrete role 
consciousness plays in assigning meaning to signals, our 
mind tends to weigh physically sensed signals more 
heavily than abstract ones.  Yet overall, the mind does 
perform abstractions on a regular basis, making this 
another aspect of cognition often taken for granted.  From 
this we can infer that two of the most important aspects of 
cognition are the ability to abstract and to generalize. 
 
3.6.  Corner Regions of the Framework 
 
Finally, we complete this overview by describing the 
corner regions of our framework.  But first, a couple of 
observations about the framework overall.  One 
observation is that physical entities tend to reside in the 
lower levels of the framework while mental entities reside 
in the upper levels.  This corresponds to the spatial 
hierarchy within the framework and also has implications 
concerning signal-flow in the abstraction dimension.  
Second, entities which change most often tend to be on 
the left-hand side of the framework while entities which 
change less often are on the right.  This corresponds to the 
temporal hierarchy within the framework and has signal-

flow implications as well in the generalization dimension.  
Thus the overall framework consists of these overlapping 
hierarchies which, when combined, form the various 
regions of this two-dimensional framework (see Figure 1). 
 
The intersection of the abstraction and generalization 
dimensions helps define the corner regions of our 
framework.  This intersection places raw signal activity in 
the upper left corner, practical activity in the lower left, 
theoretical activity in the upper right and fundamental 
activity in the lower right-hand corner.  By “raw” activity 
here we basically mean unorganized, quickly changing 
signals.  These signals are considered specific and 
abstract within the context of our framework.  By 
“practical” we mean specific, high-frequency signals that 
have more form and structure than do raw signals.  This 
implies that these signals have more of a physical 
presence, indicating that they may more readily be 
“sensed.”  By “theoretical” we mean the combination of 
abstract and general concepts.  For instance, this 
framework may be considered theoretical.  Finally, 
“fundamental” represents the combination of concrete 
concepts and general principles.  Something theoretical 
may be considered fundamental once its principle 
structure becomes formally realized and generally 
accepted.  Together these four corner regions, along with 
the regions previously mentioned, complete the shell of 
our conceptual framework. 
 
4.  Conclusion 
 
We have provided a very general description of cognition 
as part of the intelligence process and have proposed 
using a unique conceptual framework from which to view 
the cognitive process.  Abstraction and generalization 
form the basis of this framework in a two-dimensional 
sense, with space taken as one dimension and time 
serving as the other.  We have used a graphical 
presentation of basic concepts to help illustrate main 
points of this framework.   
 
We by no means want to trivialize the significance or 
complexity of cognition or intelligence by providing such 
a simple description.  Our intent is to develop a new 
perspective on a theory of mind that, by combining 
seemingly simple concepts in a certain way, takes on 
fundamental significance. 
 
The goal of this work is to develop computer technology 
that can perform information processing in a more 
intelligent fashion.  We use this framework to help 
understand the order and organization present in natural 
intelligence in an effort to model its underlying order.  
The ultimate purpose of this modeling effort is to assist 
humans in the performance of functions heretofore 
unachievable.  Computer technology will provide much of 
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the infrastructure needed for this.  Yet before we can 
simulate desired functionality using computer technology, 
we must develop an adequate model for it, which 
ultimately involves having a sufficient description of 
relevant concepts.  Computers perform very many 
information processing tasks for us each day.  We hope to 
enable more functions by adding new forms of 
intelligence to existing automated models. 
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