

Title: Sharing Resources Through Dynamic Communities

Topic: C4ISR/C2 Architecture

Authors: Kevin Foltz and Coimbatore Chandersekaran

POC: Kevin Foltz

Name of Organization: Institute for Defense Analyses

Address: 4850 Mark Center Drive, Alexandria, VA 22311

Telephone: 703-845-6625

Fax: 703-845-6848

Email: kfoltz@ida.org

Sharing Resources through Dynamic Communities

Abstract
Organizing computer network resources in a secure and efficient way is one that has been

studied extensively. Many successful implementations of these networks exist today. The
problem of interaction between these networks is an evolving problem with fewer theoretical and
practical solutions available. The main problems in such collaborations are ease and quickness of
setup, functionality, and security.

We examine some proposed models for forming a dynamic community (DC), and
propose a new model for building DCs that addresses some of the shortcomings of other models.
We propose extensions to current models, such as addition of sensors to a network. We show
how to implement such a DC using Microsoft’s .NET technology.

1 Introduction

Many organizations have computer networks that manage computers, users, data, and
services efficiently. These networks enforce organization policy for these elements, allowing
users to access resources in prescribed ways and restricting unauthorized access. The problem of
interaction between different organizations is more difficult.

We study collaboration among different organizations using the idea of a dynamic
community (DC). We consider not just sharing of data, but collaborations requiring tight
integration of all elements of the collaborating organizations. These collaborations may be long-
term mergers, short-term goal-oriented tasks, or ongoing projects between different organizations.
Rapid assembly of collaborating partners is required, so these DC’s must be established
considerably more quickly and efficiently than setting up an entire new network. However, they
must still provide the proper functionality and security measures to ensure safe interaction and
sharing of resources.

1.1 Collaboration Scenarios
To better analyze DC models and their attributes, we have constructed several real-world

scenarios where dynamic communities would be desirable. We present four of these examples
below; each poses a different set of challenges to DC design.

I. Company Merger (Rapid Assembly) Two large companies agree to merge. Fully
integrating their two distinct networks (including establishing trust relationships) would
take many months. A DC could serve as the method of uniting the companies during the
initial stages of the merger, allowing essential parts of each company to collaborate
immediately. Here the quick-creation feature of dynamic communities is essential, and the
DC must accommodate large-scale collaboration on a domain level.

II. Joint Military Operation (Data Isolation) Military strategists of three different
governments wish to collaborate temporarily to plan and conduct a small joint operation.
However, no military trusts the others’ computer networks completely, and each military
wants its computers and resources outside of the community to be completely isolated from
the collaboration. In this scenario, only portions of each pre-existing static domain wish to
become part of the new community, and strict separation between the community and
contributing domains is a high priority.

III. Proprietary Research (Data Confinement) The FDA is evaluating the effects of a new
drug. A thorough examination of the drug requires the FDA to cooperate with the
pharmaceutical company that developed the drug and also with a research hospital that has
conducted experiments on it. Privacy is a great concern in this collaboration, as the
pharmaceutical company wishes to divulge as little information about its research as
possible, and the hospital must not release any confidential information regarding its
experiments. Neither organization wants the government to have any more access to its
networks than absolutely necessary. Additionally, the pharmaceutical company expects the
proprietary information it contributes to be used only to evaluate the drug; it must not leave
the community. This last requirement requires effective information confinement in the
dynamic community.

IV. Government Agency Merger (Secure Rapid Assembly) As a collaboration of intelligence
and anti-terrorism departments of several federal agencies, the Department of Homeland
Security is a promising model for a dynamic community. The Homeland Security Act
states that six departments, each from a separate government agency, should be transferred
into the control of the Secretary of Homeland Security, and the Secretary should also have
access to terrorist-related information from any U.S. government agency. This scenario
differs from the multi-governmental collaboration described above in that speed as well as
security is a prime concern. Not only will much of the shared information be extremely
sensitive, but the department must also be able to access resources in a timely manner.
Additionally, a dynamic community model for this scenario must contain an efficient
method of organizing the vast amount of information involved in the collaboration of
multiple U.S. government agencies.

1.2 Solution Requirements
The basic vision for a DC is to combine parts of multiple self-contained organizations in

a way that allows them to share resources in a highly integrated way. A DC should be able to
efficiently handle anywhere from a few principals to thousands of principals, from up to tens of
organizations. For this collaboration a set of policies regarding users, computers, applications,
services, and their interactions is required. Enforcement of local policies can remain under the
control of the contributing organization, but the policy must be autonomous from the contributing
organizations.

A DC must be able to manage additions and removals of principals and resources.
Removal of users should be prompt, with no residual privileges. Addition of resources should
occur rapidly, and they should be assigned to users in a well-defined way. Removal of resources
could be dependent on either the DC itself (e.g. Scenario I) or the contributing member (e.g.
Scenario II). Different removal policies should be available at DC creation time.

Organizations’ computer networks could contain various devices, such as sensors, that
would be useful to a DC. Sensors have different attributes and limitations, such as power
constraints, that must be considered, making integration more implementation-dependent than
with standard computer network resources. A DC must allow for sensors while addressing these
differences.

Management and evolution of policies is also an important consideration. In a DC this
importance is magnified by the fact that different groups with different policy structures are
merging to manage sensitive information under one governing policy. A DC should provide
appropriate measures to help balance internal power.

1.3 Prior Work
The Department of Defense Goal Security Architecture (DGSA) [1] gives a high-level

view of resource sharing over different physical networks. Information is separated into logical
and physical domains. These domains have no relation to each other, so a logical domain can
span many different physical domains, and physical domains can contain many different logical
domains. The EDS [5] model builds on the DGSA. Information is placed within the three axes
of entities, domains, and systems and the EDS model describes information flow and restrictions
along these axes.

A peer-to-peer (P2P) network is a simple way to share resources. Each member joining
the collaboration makes certain resources available to the community. Requests that cannot be
handled locally are forwarded to the peer-to-peer network. These networks are easy to manage,
since they are distributed and individual members do most of the maintenance themselves.
However, there must be a discovery service to allow efficient communication and sharing by the
members of the community. Security in such systems is dependent on each individual
implementing appropriate measures.

The Secure Virtual Enclave (SVE) model [6] retains the primary features of a P2P DC.
Resources remain under the control of the individual member domains. Each “enclave” contains
architecture that maintains a list of its members. Members share these lists and use them to
authenticate and authorize users from outside their local domain. Figure 2 shows the basic SVE
structure, and Figure 3 shows the infrastructure used in user authentication.

In a University of Maryland Model Dynamic Community (MDDC) [4], separate identity
and authorization servers from multiple member domains combine for resource access.
Credentials are issued locally, but authorization credentials may be transferred from one domain
to another. Figure 4 shows the steps taken when a user in one domain accesses a resource in
another domain. The MDDC model also includes a threshold cryptographic mechanism for joint
administration, and a method for prompt removal of members from the community.

These DC models each address some requirements for a DC, but none fully satisfy them.
The DGSA is not feasible in its current state, as there are no practical designs for implementation.
The P2P, SVE, and MDDC models do not address confinement, which would be important in
Scenario III. They also do not discuss sensors and other devices. The P2P and SVE models offer
no internal controls for group-based management.

Some commercial DC models are available, such as eRoom by eRoom, Inc. [7] and
Lotus’s QuickPlace [8]. These products fulfill many requirements of dynamic communities. They
can be created quickly, they support dynamic membership changes, and they provide a common
forum for group communication, task management, and document sharing. However, the sharing
of complex resources such as databases and applications is not supported, and the applications do
not isolate the dynamic community from the domain of the host server. Also, since they are
applications they are subject to lower level attacks, which would undermine their security.

1.4 Outline
In the following section we present a new model for a DC. We describe its operation and

how it meets the DC requirements. In Section 3 we compare this model to prior models. Section
4 discusses a plan for implementation using Microsoft’s .NET server. Existing functionality is
discussed, and ideas for adding functionality that is lacking are presented. Sections 5 and 6 offer
concluding remarks and ideas for future work.

2 CADC Proposal
The Centrally Administered DC (CADC) model attempts to meet all the requirements for

a DC as discussed in the introduction. Rather than join community members on a P2P basis, this
model essentially creates a new domain from the member domains, which allows the community
administration to be centralized. In general, this model does not achieve the transparency of the
P2P approaches, since users must be conscious of whether they are accessing resources in their
own domain or via the DC. However, by encapsulating policy within the DC it offers a
functionally richer model and simplifies several aspects of community operation.

It is worthwhile noting the differences between a CADC and a federation. The two are
similar, but with some important differences. In a federation members remain whole entities, but
a larger governing body encapsulates them and provides higher-level policy. In a CADC the
members each contribute a piece of themselves to a new entity, the CADC. The members lose
those pieces and the CADC is formed by integrating those pieces. Figure 1 illustrates these
differences.

Figure 1. Top: Creation of Federation (F) from members (A, B, and C). Bottom: Creation of
Dynamic Community (D) from members (A, B, and C).

2.1 Basic Operation
The workings of the CADC are controlled by the central domain administrator (CDA).

Users join this CADC much like they would join a static domain; they either submit a request
with appropriate information to the CDA—who then accepts or rejects the request based on
predefined policies—or the CDA adds users after acquiring the necessary information through
offline discussion. Resource access also resembles the familiar static domain process. In a CADC

organizations must transfer their shared resources into the central domain (Figure 1). Switching
resources to a new domain increases community functionality and policy flexibility by granting
the central domain control over all of the resources.

2.1.1 Setup and Configuration
There are several tasks associated with creating a CADC; among these are configuring

policy, creating a structure for naming and organizing users and resources, and establishing an
authentication mechanism. Fortunately, network operating systems now support automatic
configuration for many of these domain creation steps. However, there is virtually no automation
in the setting of the hundreds of policies involved in created a CADC. The CDA must tailor the
security and user policies to the specific nature of the community, and since these depend on the
nature of the CADC’s mission, there must be a thorough understanding of this mission and its
effect on potential policies. For example, in Scenario I certain information in the DC could be
shared freely, since the two companies are likely to benefit from the increased flow of
information, and strict security policies could impede progress. However, in Scenario II, where
the governments merge briefly and then separate, a policy of strict security would be more
appropriate.

The community creator places all information necessary for potential DC members to
find, evaluate, and then possibly join the CADC—such as community function, types of resources
available, and access requirements and instructions—into a community directory object (CDO).
The CDO is published in a well-known location, such as a web page, and users can access the
information contained within the object to submit join requests to the CDA. Internal discovery—
the method community members use to find out what users and resources are available inside the
community—is achieved through an “internal” CDO.

2.1.2 Resource and User Management

 To share resources to the community, resource owners must first put them in the
centralized domain, either by moving or copying them or by joining the server holding the
resources to the CADC domain. Resources might remain under the control of their original
owners; this policy prevents the CDA from having to manage a large number of community
resources. Importing resources is required to provide confinement and give the CDA control over
resource policies.

This is especially important in more sensitive communities, where member domains
might have strict access and security policies. Coordination of strict individual policies would be
considerably more difficult than establishing a working policy as one unit. Additionally,
transferring resources eliminates the need to establish a complicated trust relationship between a
CADC and its members’ original domains. Users and resources can enter the community on an
individual basis, and the CDA is not required to trust or communication with other domains.

A CADC handles members entering and leaving the community in much the same
manner as a static domain. User entries and departures from the community are handled on an
individual basis. An individual enters an already existing CADC by sending a join request to the
CDA. That request is evaluated and accepted or rejected by the CDA using some mechanism such
as a community-wide vote. If accepted, the new community member is then issued an
authentication credential by the CADC, and assigned to the appropriate authorization group. The
new user is granted access to specific community resources based on specific member
information, the community’s security policies, and the decisions of individual resource
managers. Policy templates and group policy can aid this process, particularly if a community

accepts multiple users from the same static domain, where similar policies can be applied to each
member.

To remove users from a CADC, the CDA simply revokes their identity credentials and
removes references from the discovery service. Resource owners are responsible for updating
their ACLs; however, this process is not time-critical because former members should be denied
all access on the basis of their revoked identity credentials. The fate of resources owned by users
leaving a CADC is not specified. In many cases, resource owners will remove their resources
when they leave the community (e.g. Scenario II); however, in other cases these resources might
be considered essential for community function (e.g. Scenario III). Since the CDA ultimately
controls all community resources, it does have the power to prevent a resource owner from
removing its resource from the DC. However, with local control a user can delete or modify
resources, thus effectively removing them, despite the CDA’s wishes.

2.2 Sensors
Sensors are a useful addition to many computer networks. For example, law enforcement

teams would find sensors useful to monitor communities under their watch. Military coalitions
could also use sensors to monitor a combat zone remotely. Sensors are similar to other computer
network elements, since they often have memory and processors and can communicate using
similar channels and protocols. However, sensors are often distributed in different ways, have
different levels of resources available, such as limited battery life, and appear in different
numbers and with different functionality than other elements in a network. As a result, we must
be prepared to treat sensors and similar devices differently than other network elements.

The operation of a sensor is more constrained than that of a standard computer. Current
technology is enabling smaller sensors, with lower power consumption. For these ultra-small and
ultra-low-power devices, we must think about networking under a new set of parameters. Instead
of speed of network connections and speed of processors, the new primary constraint is often
energy (or energy per bit transmitted). With small devices, computing power generally decreases
with decreasing size. However, communication power does not necessarily decrease in a similar
way.

The Smart Dust project [3] has a method to avoid the communication power problem. A
high-power base station sends out light signals, and the sensors respond by adjusting reflectors to
either send light back to the source or deflect it away. Thus, little communication energy is
required at the sensors, since sending a bit amounts to simply orienting a tiny mirror in one
direction or the other.

An easy way to allow communication between sensors and computers is to use standard
Internet (TCP/IP) protocols. The problem is that these protocols are not optimized for devices
with limited power and changing network topology. Although this implementation would be easy
to set up, its performance would suffer due to the mismatch between the protocol and the system
on which it is used. To push the limits of integration of the two types of networks requires not
just a common interface, but more detailed information about the elements, naming,
organizational structure, and interaction policies in each network. Since the sensors have energy
constraints, potentially less reliable communication, and specialized functionality, we consider
applying a subset of the privileges and responsibilities of normal DC members to the sensors.
This has the potential advantages of sensor energy conservation and efficient directory access.

2.3 Robust Management
In a typical system, there are critical services that must be provided by different

components. Attackers can target any one of these components as a way to compromise services

and ultimately disrupt the entire system. Consensus-based administration (CBA) is a way to
distribute authority for important services. When a certain number of the members agree, action
is taken, and any number of malicious users (or corrupted users) less than some threshold cannot
disrupt the honest members. By requiring the approval of many principals to invoke a service, an
attacker must work harder to affect the system’s operation. Such systems are also more robust to
faults caused by normal accidents or improper configurations. Another application for
consensus-based administration is for systems that are inherently distributed and require
agreement to perform an action. The mapping here is natural, as CBA allows a single decision to
result from multiple individual decisions in a secure way. In this case, CBA aids the system by
providing a secure framework in which to make these decisions.

We look at some basic ideas of consensus-based administration. The main goal of
consensus-based administration that we will consider is allowing a single point of failure to be
distributed among some larger number, n, of units in such a way that even if some threshold, t, of
them are compromised or malicious, the remaining honest units can complete the desired action.
The threshold t can be no larger than (n-1)/2. Otherwise there could be two groups of size n/2
that both have authority to take an action (based on their numbers), but disagree on the action to
take. So the honest members must be in the majority in any simple threshold scheme.

A simple way to accomplish consensus-based administration is to combine a number of
individual keys using a threshold technique. The n servers create their own individual public key
pairs and the set of all the public keys is used as the public key for the threshold scheme. A
problem with this approach is that each signature or encryption requires a key of size proportional
to n. As a result, this method does not scale well. Also, this technique requires changing the
signature and encryption algorithms for a system’s users, which is not simple for existing
systems.

Jarecki [2] discusses Feldman’s method to share secrets among n members, such that any
t+1 honest members will compute a valid common secret. It is based on the (assumed) difficulty
of the discrete logarithm problem and the ability to interpolate a t-degree polynomial using t+1 of
its values. Jarecki points out a flaw in this algorithm and proposes a way to fix it. This algorithm
can be used to determine access to services in a CADC using CBA. The shared secret in this case
is the decision about whether to grant or deny access. Individuals may use agents to make
decisions for CBA, and only handle more complicated cases “manually.” This speeds the
granting of requests for users of services and allows those members involved in CBA to focus on
the more important decisions.

3 Model Comparison
We compare the different DC models. We look at setting up a DC, how resources are

managed in a DC, and how users are managed. Since the P2P, SVE, and MDDC models do not
incorporate sensors, we leave out such a comparison.

3.1 Setup and Configuration
Because there is no new domain to configure in a peer-to-peer network, P2P DC creators

do not have the numerous policy decisions that a CDA must consider when forming a CADC.
Instead, policies are left to the discretion of the individual member domain administrators of the
P2P DC. This results in a distributed policy that depends on the policies of the individual
contributing members. On the other hand, “member domains” of a CADC have no control over
contributed resources except through the CDA. This allows the CADC to be autonomous in
setting policies.

Both the SVE and MDDC models base membership on a domain level. Member domain
administrators notify the MDDC of members that will join, and interested members in a domain
form an enclave that becomes part of an SVE. Domain-based membership is convenient in a
company-merging situation; however, on other occasions only a subset of users in a member
domain may want to have any relationship with a DC. Achieving this separation between domain
members that join and stay out of DC’s is problematic in the P2P models. Domains establish
proof of identity by issuing identity credentials that each entity in the domain must trust as a
condition of membership. However, because there is no community-wide identity CA, P2P
communities require that each member domain trusts all identity certificates from all other
member domains, which includes certificates for domain members not participating in the P2P
DC. This trust represents a potential security vulnerability.

3.2 Resource and User Management
Sharing resources in a P2P DC is a simpler process than in a CADC because shared

resources remain with resource owners instead of being transferred to a central domain. This
eliminates the need for community administrators to find storage space for resources, negotiate
with static domains over resource transfers, or deploy interfaces (such as database clients) for the
shared resources.

An additional issue involves the location of the community-wide authorization CA that
the MDDC authors recommend for enforcing joint ownership. This CA is supposed to be isolated
from each member, but actually achieving that goal is a challenge, as by the nature of a P2P
network there is no self-contained location outside of the member domains. If the CA exists on a
member domain, then that domain administrator may have more control over the jointly-owned
resources than other member domains. In a CADC, the CA is a fundamental part of the DC itself,
and it is managed by the CDA.

Both the SVE and MDDC models handle user entry and departure from communities
similarly. Prospective members join a community by submitting a request to join and having that
request granted; they leave by notifying an administrator. The SVE model does not allow for
explicit timely removal from the DC. The MDDC corrects this by ensuring that when a user
leaves the DC that user no longer has access to resources of the DC, and no other principals to
which the user has delegated authority can use this authority to access resources.

The models differ on how to preserve unique user names. While a CADC forces users to
use a separate identity for all community operations, both the MDDC and SVE models make
community interaction transparent—users can continue to use their static domain identity while
accessing resources in and out of the community. This feature makes users’ tasks easier, although
it requires that each static domain administrator have knowledge of every DC member to map the
names to identities that resource owners in that domain can understand.

The P2P and SVE models do not address CBA. The MDDC model offers some basic
mechanisms for allowing group-based decisions to be made. However, the requirements for joint
administration proposed include the unanimous consensus of all parties. The CADC model
allows different thresholds to be set to allow for single points of failure, or multiple compromised
entities.

4 Implementation with .NET
We look at implementing a CADC using Microsoft’s .NET server Enterprise Edition.

The widespread use of Microsoft’s Windows 2000-based operating systems is the main
motivation for considering .NET for DC’s. It is new, but it is largely based on the Windows 2000
architecture. We focus mainly on the aspects in common with Windows 2000, and leave many of

the newer, .NET-specific components for future consideration. The main components we
consider from Windows 2000 are Active Directory (AD) and the idea of domain-based
computing. Together these offer a good starting point for building a DC.

4.1 Basic Implementation
The first major step to set up a DC with .NET is to set up Active Directory (AD), the

directory service for the DC. AD provides a way to organize and locate users, computers, sites,
domains, trusts, services, and organizational units (OU’s). Management of such entities also
occurs through AD, allowing addition, deletion, and policy modification. With the directory
service established through AD, the DC policies can be established for the elements listed in the
directory.

The next important step is establishing an auditing policy, ranging from local computers
to domain-wide auditing. Security incidents will occur, and it is important to record appropriate
information to allow the determination of their cause and resulting effects. Having auditing
encourages non-malicious organizations to join a DC, since it adds some accountability to
members’ actions. Reckless behavior by one organization is recorded and can be reviewed and
penalized if desired.

At this point, more domain controllers can be added that run .NET server and AD. These
will all replicate the AD data and provide a higher degree of reliability and performance for AD.
Finally, the CA’s are established, starting with a root CA and its self-signed certificate, and
progressing to other CA’s with certificates signed by the root. This takes care of many of the
requirements for a DC. However there are requirements that .NET cannot yet suitably handle.

4.2 Additional Functionality Requirements
Sensors pose a difficult problem for a DC. Different sensors can have widely differing

properties. Also, many sensors are low-power devices that cannot afford any inefficiency in
communication or DC membership maintenance. So, we have a large space of possible
implementations, each of which has specific and inflexible requirements. We propose two
different ways that AD could be extended to allow incorporation of sensors into a DC. The first
method of adding sensors is direct insertion into AD. Just as computers and users are maintained
in AD, sensors are added as an additional type of entity with their own properties. This method
would work well for autonomous sensors with ample CPU cycles, memory, storage, power, and
communication bandwidth. A user would have access to basic controls and sensor readouts, as
determined by DC policy and sensor functionality. Also, sensors, like users, could be pooled into
groups for easier administration.

The idea for the second type of sensor resource is to take a layered approach in adding
sensors to a DC. Instead of providing access to sensors directly, we provide access to custodians,
sensor organizational units that have the specific task of maintaining sensors, groups of sensors,
or other custodians. Users access sensors through these custodians, which then communicate
with the sensors directly themselves or indirectly through other custodians. The custodian
framework allows efficient scaling to large numbers of sensors, using a tree structure. It also
isolates users from the particular implementation of the sensors, allowing sensor changes and
upgrades to be transparent to users. However, the result is a reduced integration of the sensors
into the DC. For this reason, we would use the layered approach of integration only if direct
insertion is infeasible.

For consensus-based administration in AD, we also encounter difficulties in .NET and
AD. A CBA implementation in AD should be closely tied to the existing user and group structure
of AD to allow reuse of existing functionality. We propose adding CBA to AD by creating a new
type of user, a CBA user. This CBA user has a list of members, which must come to consensus
before action is taken. A CBA user really represents a group of users, but it has a unique identity

and has permissions and rights assigned to it like an ordinary user. DC resources that require
CBA would be placed under the control of the CBA user, which would then request authorization
from its member administrators before taking actions. For example, a database service could be
placed under a CBA user, and when a request is made to change database policy the CBA user
would query the member administrators and take action based on their responses. When a
threshold number of administrators vote in favor, the action is taken.

Since there is considerably more overhead in performing actions through a CBA user
than through a normal user, due to the many votes that must be collected, it might be best to only
assign important tasks to CBA users. However, the use of such CBA users would ultimately be
up to the organizations that implement the DC.

5 Conclusion
Different organizations, when motivated by a common goal, will wish to collaborate,

which requires sharing and integration of their resources. Dynamic community models provide
frameworks in which such collaboration can happen quickly and securely. Models for DC’s have
been proposed, stressing different aspects of collaboration. The DGSA model considers the high-
level view and stresses security by restricting the flow of resources. The Peer-to-peer model is a
simple sharing scheme in which different domains can join and leave a collaboration and share
data with other members of the collaboration.

The SVE model is a more complete DC model. It is similar to the P2P model, except
resources to be shared are specifically sectioned off and made available to the SVE. The MDDC
model takes this farther by introducing explicit removal of members and resources by the DC and
allowing for group administration of important resources. Each of these models solves parts of
the collaboration problem, but none of them offers a complete solution. In particular, the addition
of sensors is not addressed, and group-based internal control is not well developed.

We propose the CADC, a centralized model that continues the trend away from the
distributed sharing of P2P systems and more toward a system for resource integration. This
model completely separates resources from their contributing domains, requiring either
movement or replication of resources into the CADC domain. Users must have separate
identities inside and outside the CADC. This model requires more initial work to set up, but
allows tighter integration of resources when established. For implementation, we consider the
.NET server, specifically Active Directory. We find that much of the functionality of a DC is
available in AD, and we propose ways to add functionality for sensors and consensus-based
administration.

6 Future Work
For the future, it would be desirable to implement working DC’s using .NET and

examine which aspects work well and which ones need revision. Since the resources available
for sensor and CBA integration are limited, a deeper examination of these issues, involving
testing of various integration techniques would be valuable. Much of the work would be based
on case studies making use of DC’s to solve real-world problems. Initial tests would be for non-
critical collaborations without sensitive data, with more realistic and sensitive testing as DC
implementation improves.

Work on CBA would also be valuable. There are different methods of achieving CBA,
but the main problems DC’s will face with CBA are not completely clear yet. For example, the
delay of waiting for authorization using CBA could negate the potential gains of CBA. Work in
developing agents to make CBA decisions would be good to explore, to examine what portion of
decisions could be made immediately and what portion would require longer latencies.

7 References
 [1] Department of Defense (DoD) Goal Security Architecture (DGSA), Center for Information
Systems Security (CISS), Defense Information System Security Program (DISSP), Version 3.0,
30 September 1995.

[2] S. Jarecki, “Efficient Threshold Cryptosystems,” Ph.D. Thesis, 2001, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology.

[3] J. M. Kahn, R. H. Katz, and K. S. J. Pister. “Next Century Challenges: Mobile Networking
for Smart Dust.” In Proceedings of MOBICOM, pp. 271-278, Seattle, 1999.

[4] H. Khurana, “Negotiation and Management of Coalition Resources,” Ph.D. Thesis, 2002,
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD.

[5] E. Schneider, E. Feustel, R. Ross. 1997. Assessing DoD Goal Security Architecture (DGSA)
Support in Commercially Available Operating Systems and Hardware Platforms. IDA Paper P-
3375, Institute for Defense Analyses, Alexandria, VA.

[6] D. Shands, R. Yee, J. Jacobs, E. J. Sebes, “Secure Virtual Enclaves: Supporting Coalition
Use of Distributed Application Technologies,” Proceedings of the Network and Distributed
Systems Security Symposium, San Diego, February 2000.

[7] eRoom. http://www.eroom.net/eRoomNet/

[8] Lotus QuickPlace. http://lotus.com/products/qplace.nsf

8 Appendix
Included here are diagrams illustrating different DC models.

DDoommaaiinn AA

RReessoouurrccee

AAddmmiinniissttrraattoorr

CCDDAA ((AAddmmiinniissttrraattoorr))

DDoommaaiinn BB

CCAADDCC

CADC Structure

PPrriinncciippaall

RReessoouurrccee CCooppiieedd

RReessoouurrccee MMoovveedd

PPrriinncciippaall ggiivveenn
CCAADDCC IIDD

Figure 1: Structure of a CADC. Note that all community resources
are moved or copied into the community domain, and principals
have new identities in the CADC.

Services not in SVE

SVE

Enclave A Enclave B

Services in SVE

Services partly in SVE
Principals in SVE

Principals not in SVE

Figure 2: Composition of the Secure Virtual Enclave dynamic community model.
Note that all community resources are part of an already existing enclave and
principals in each enclave can access resources from their enclave that are also
part of the SVE.

Secure Virtual Enclave

SVE Component Architecture
Policy
GUI

SPEX
Controller

SPEX
Admin
GUI

Access
Calculator

Access
Calculator

Access
Calculator

Application
interceptor Application

interceptor Application
interceptor Application

interceptor
Application
interceptor

SVE Control Messages

Enclave Enclave

Policy
GUI

SPEX
Admin
GUI

SPEX
Controller

Access
Calculator

Access
Calculator

Access
Calculator

Application
interceptor

Application
interceptor

Application
interceptor Application

interceptor Application
interceptor

Figure 3: Infrastructure used in an SVE. SVE Control messages contain
names of community users from each enclave. Access requests to a server in
an enclave are intercepted by interceptors, which query the access
calculators for a decision on whether to grant the request. Access calculators
base the decision on name mappings from the SVE Policy Exchange (SPEX)
Controller.

MDDC Structure

Domain 1 Domain 2

Trust Relationship

Auth. CA2

User
Bob

ID Cert.
User2

ID Cert.

Server P

1. Request

Server
Q

Authz.
 CA1

Authz.
 CA2

3. Request (w/ Authz., ID certs.)

2. Authz. Cert.

4. Requested Resource

Figure 4: Overview of resource access in an MDDC. Bob first requests an
authorization credential from the authorization server in P’s domain (2). Then
Bob sends a request to P with his ID credential and the authorization credential
he just received (3). This is sufficient for access (4).

Auth. CA1

