
Optimization-based Agent Simulations for Evaluating the SPEYES System1

Student Submission

(Modeling and Simulation)

Candra Meirina2,*

E-mail: meirina@engr.uconn.edu
Feili Yu2,*

E-mail: yu02001@engr.uconn.edu
Sui Ruan2,*

E-mail: sruan@engr.uconn.edu

Georgiy M. Levchuk
Aptima Inc.

12 Gill Street, Suite 1400
Woburn, MA 01801

Phone: (781) 935-3966 ext. 267
E-mail: georgiy@aptima.com

Krishna R. Pattipati2,3

2University of Connecticut, Dept. of Electrical and Computer Engineering
371 Fairfield Road, Unit 1157

Storrs, CT 06269-1157
Fax: 860-486-5585

Phone: 860-486-2890
E-mail: krishna@engr.uconn.edu

David L. Kleinman

C4I Academic Group
Naval Post-graduate School

589 Dyer Road, Monterey, CA 93943
Fax: 831-656-3679

Phone: 831-656-4148
E-mail: dlkleinm@nps.navy.mil

Robert L. Popp

Information Exploitation Office, DARPA
3701 N. Fairfax Drive, Arlington, VA 22203-1714

Phone: (703) 248-1520
E-mail: rpopp@darpa.mil

1This work was supported by the Information Exploitation Office of the Defense Advanced Research Projects Agency.
This document carries the Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).
3Correspondence: krishna@engr.uconn.edu
*Student

1

Optimization-based Agent Simulations for
Evaluating the SPEYES System*

Candra Meirina1, Feili Yu1, Sui Ruan1, Georgiy M. Levchuk2,
Krishna R. Pattipati1,5, David L. Kleinman3, Robert L. Popp4

1Univ. of Connecticut, Dept. of Electrical and Computer Engineering, Storrs, CT
2Aptima Inc., Woburn, MA

3Naval Postgraduate School, Dept. of Information Sciences , Monterey, CA
4Information Exploitation Office, DARPA, Arlington, VA

Abstract

This paper presents an optimization-based agent-driven Distributed Dynamic Decision-making (DDD)
simulation model to evaluate the SPEYES (Security and Patrolling Enablers Yielding Effective SASO -
Support and Stability Operations) system. The key challenge is to quantify the force multiplying effect
of SPEYES technologies, which span sensing, situation awareness/command and control (SA/C2), and
shaping components. The performance improvements were measured in terms of timeliness, effectiveness,
and efficiency of operations. The behaviors of optimization-based agents were first calibrated to those of
human-in-the-loop simulations. The agent-driven simulation results indicated that integration of SPEYES
sensing, SA/C2, and shaping technologies provided significant performance improvements to the force
across all measures. Even at 50%-reduced force, the SPEYES system maintained significant performance
improvements over regular operations with a full force and without SPEYES, thus confirming the force
multiplier effect of SPEYES technologies. The findings are confirmed by human-in-the-loop simulations.

I. INTRODUCTION

A. SPEYES System Overview

This paper discusses an agent-driven DDD simulation model to assess the SPEYES system. Historically,
rapid post-conflict stability has been attained through high-troop densities. A key motivating theme
leading to the SPEYES effort is the challenge of trying to enhance the SASO effectiveness with a limited
number of forces through various force-multiplying technologies. The force multiplying technologies
include: Sensing - low-cost, easily-emplaced, camouflaged sensors (video, acoustic, Infrared) to provide
urban situation awareness; Situation Awareness/Command and Control (SA/C2) - multi-echelon software
tools tailored for distributed operations (planning, dynamic resource management, simulation, mission
rehearsal); and Shaping - non-lethal, and explosives ordinance disposal (EOD) shaping tools, for example,
to diffuse adversaries, crowds, and improved explosive devices) [1]. Figure 1 illustrates notionally how
’security’ coverage could be expanded with the introduction of various technologies, e.g., tracer RFIDs,
non-lethal weapons, smart scheduling, multi-spectral cameras, swarming unmanned vehicles.

The force-multiplying enablers increase the effectiveness of forces for SASO by means of better threat
recognition, increased situational awareness and intelligence of the post-conflict environment, and im-
proved decentralized operations. The SPEYES sensing technologies will increase the speed and ability of
the forces to gather intelligence by the combined use and smart placement of visual, acoustic, spectral, and
infrared sensors. The information gathered from the sensor observations allows troops and commanders
to gain better situational awareness, and facilitates more efficient scheduling and patrolling, including
the utilization of innovative shaping technologies [6]. Better and faster observations, combined with more

*This work was supported by the Information Exploitation Office of the Defense Advanced Research Projects Agency.
This document carries the Distribution Statement ”A” (Approved for Public Release, Distribution Unlimited).
5Correspondence: krishna@engr.uconn.edu

2

Fig. 1. The Notional Effect of Force Multipliers

accurate and timely orientation, permits better and more focused decisions leading to quicker and more
effective actions on the part of the US forces.

B. Methodology

The challenges to evaluate SPEYES system include the determination of which security technologies
create significant difference, how many of them are needed, and where they should be located to establish
the desired force multiplying effects. We employed optimization-based dynamic planning and scheduling
agents [2] within the Distributed Dynamic Decision-making (DDD) simulator [3] to quantify the force
multiplying effect of SPEYES technologies.

The nature of the security and stability operations is similar in many respects to the emergency response
service problems in urban operations research. The resource allocation, deployment, and incidence fore-
casting are fundamental issues in both. The Square Root Law [4] from urban operations research guided
the agent-driven simulation-based efforts. The law is derived from a simple realization that distance is
the square root of area. Thus, the traveled distance D, and consequently, the response-time Tr, of N0

patrol units is proportional to the square root of the effective area A:

E[Tr] ≈
E[Tr]

vc

=
c

vc

√

A

N0(1− ρ)
(1)

where vc denotes the patrol speed, ρ represents the busy (utilization) rate of the patrol unit, and c is a
constant. What this law states is the following. Suppose we are able to reduce the response time from
Tr1 to Tr2 with SPEYES technologies (Tr1 > Tr2) for a given area A. Then, if we are willing to tolerate
the same response time of Tr1 with and without SPEYES technologies, then the same number of forces

with SPEYES technologies can cover a larger area A2 = A

(

Tr1

Tr2

)2

, or equivalently, we can reduce the

size of the forces to cover the same area.
We propose to utilize the lessons learned in urban operations research to show the improvements in

timeliness, efficiency, and effectiveness stemming from the utilization of a SPEYES system. Operational
efficiency was gleaned from the ability to maintain the same degree of force protection, while decreasing
the number of personnel, amount of equipment, and cost and/or resources needed to sustain a particular
level of protection. System effectiveness was gauged through improved force protection and incident

3

����

���

���

����	

�
��	

����� �
���

�
���

�����

����	 �
��	

����� �
���

�
���

�����

Fig. 2. The Simulation Scenario Map, Area of Responsibility, and Patrol Routes

prevention. Accordingly, keys to the agent-driven simulation for SPEYES system evaluation include: (i)
systematic evaluation of the impact of SPEYES technologies; (ii) maximizing the effective number of
patrols, i.e., troops; (iii) minimizing the response time to increase the area of coverage (for the same
response time).

Accordingly, this paper is organized as follows. Section II-A presents the SASO scenario utilized for
the simulation. A brief introduction to the DDD simulator is provided in Section II-B, and is followed by
a discussion on the optimization-based agent in Section II-C. The outlines of performance measures and
simulation results are presented in Sections III-A and III-B, respectively. The paper is concluded with a
summary of findings and future research in Section IV.

II. AGENT-DRIVEN SIMULATION

A. Scenario

The simulation utilized a military scenario similar to the one used at the National Training Center in
Ft. Irwin, California, where a simulated Tiefort City (TC), serves as a setting for urban warfare training.
The simplified geographical map of TC is shown in Figure 2. In this set-up, US and coalition forces
are conducting multi-phase operations to maintain security and stability in TC. The forces include 1
Battalion and 4 Companies. The ALPHA and DELTA companies are tasked to reconnaissance operations;
CHARLIE and BRAVO companies are assigned to cordon, search, and secure operations in TC. The latter
two companies have moved from their position at the Forward Operating Base (FOB) to the entrance of
TC, and are ready to commence operations within their areas of responsibility, as outlined in Figure 2,
to secure the power plant in TC and suppress an ongoing insurgency.

The command organization and force composition of the two companies (CHARLIE and BRAVO),
that conduct the SASO operations, is shown in Figure 3. It shows assets from company-, as well as,
battalion-levels. Each company is comprised of three platoons controlled by individual commanders.
Each platoon is comprised of two operations (OPS) units (a joint configuration of a Tank and a Bradley),
an engineering squad (ENGR), four mobile fire teams (MFTs), and two anti-sniper teams (AST). The OPS
unit carries two mobile fire and anti sniper teams on a Bradley vehicle, and dispatches them to conduct
operations inside the city. At the battalion level, there is an explosive ordinance disposal (EOD) squad,
three military police (MP) squads dealing with detainees and conducting interrogations, two helicopters
(HELO) conducting fire support, three medical squads (MED), two unmanned aerial vehicles (UAVs),
two allied police (POL) squads, and a Q-36 radar. Details of asset resources and attributes can be found
in [1].

4

����������	
�������������	
���

�����	������
	
��

�����	������
	
��

Conventional assets

SPEYES assets

�����

�������

�����

�������

	������	������
	
��

	������	������
	
��

�����
platoon

�����
platoon

�����
platoon

�����
platoon

	������
platoon

	������
platoon

	������
platoon

	������
platoon

	������
platoon

	������
platoon

��	
�����

���� ���
�� �	� 	
���

�������������

��
 �����

	�

���

��

����

��

���

��
��

���
��

��
��

�!���"� 	
��"�

�����
��

Battalion Force

 �����

��

��

��#���

	��

��!

��
�

���! �� ��

��	
�����

���� ���
�� �	� 	
���

�������������

��
 �����

	�

���

��

����

Fig. 3. The Simulation Organizational Structure

The objectives of CHARLIE and BRAVO companies are to stop the violence, establish control over
the city, secure critical infrastructure, and achieve a return to normalcy in which routine civil and
economic activities can take place without disruption. To accomplish these goals, friendly forces must
search buildings to locate and secure weapons caches, interrogate suspected insurgents, search and
neutralize snipers and foreign fighters, conduct surveillance, clear and secure strategic buildings, avoid
IEDs, prevent VBIED attacks, secure the power plant, establish check points, and deal with crowds in
the city.

In this effort, we modeled various force multiplying technologies as a single integrated SPEYES system.
To assess the performance effects of the various SPEYES technologies in terms of force multiplier payoffs,
we simulated and then compared three organizational configurations for the forces: (i) the organization
outlined in Figure 3 without SPEYES technologies, (ii) the organization outlined in Figure 3 with SPEYES
technologies, and (iii) an organization half the size of that in Figure 3 with SPEYES technologies.

B. The DDD Simulator

To realize the aforementioned assessment objectives, we utilized a flexible, controllable, distributed
simulation paradigm suitable for examining the security dynamics in a post-conflict mission environment,
and for quantifying the potential performance improvements of a SPEYES system over current practices.
Such a simulation paradigm is the distributed dynamic decision-making (DDD) simulator [3], which
allows researchers to examine the interactions between the mission structure, and the way in which the
organization tasked to execute the mission is structured. The DDD simulator allows for manipulations
of organizational structures, such as authority, information, communication, resource ownership, task
assignment, etc., as well as mission and environmental structures, representing a variety of task classes,
and assets (platforms with sub-platforms, sensors, and weapons) with specified resource capabilities.
Model-driven experiments with the DDD simulator utilize four major modeling entities: assets, tasks,
resources, and decision makers (commanders).

Tasks are activities/events that require certain resources for successful execution with appropriate
friendly assets. Tasks are generated from a mission plan or event list, and can represent individual targets
or enemy actions, location of the search to be conducted, rescue operations, defense and attack, monitor,
etc. A mission task Ti (or simply i) is characterized by the following basic attributes: (i) task arrival time,
ai (time at which the task appears in the mission scenario); (ii) task processing time window, tai

(maximal
time available from the start of task execution to its finish; this time window is used to synchronize assets
assigned to this task; (iii) estimated task processing time, ti (the interval between the time the first asset
starts executing the task and the time at which the last asset finishes the task; the task processing time must

5

not exceed the task processing time window, ti ≤ tai
); (iv) accuracy of task processing, αi, which depends

on how well the resource requirements of a task are matched by the resources allocated to the task; (v)
task start time, si (the time that a task execution is started, which is obtained during mission execution);
(vi) geographical location of task, (xi, yi); (vii) resource requirement vector [ri1, ri2, ..., riL], were rij is the
number of units of resource of type l required for successful processing of task i (l =1,. . . ,L, where L is
the number of resource types); this vector defines the resources required to successfully process (attack)
the task; and (viii) task value, ωi (task value reflects the fact that not all tasks are equally important).
In addition, there exists a dependency diagram that details the interrelationships among tasks: (i) task
precedence; (ii) inter-task information flow; and (iii) input-output relationships between tasks, i.e., the
task graph. This directed acyclic task-precedence graph represents a plan to execute the mission.

A platform (asset) is a controllable and/or movable unit, which represents a physical entity of an
organization to process a task, such as individual weapons or weapon systems, sensors, or human teams
at any level of granularity (squad, platoon, company, etc.). Resources represent the capabilities of an
asset (asset-resource capabilities), and tasks require resources to process (task-resource requirements).
Thus, in order to process a task, the organization needs to match the asset capabilities to the task
requirements. Each platform Pm (or simply m) (m = 1, . . . ,K) has several attributes that uniquely define
this platform: (i) sub-platforms, i.e., additional assets that reside on-board a parent platform that only
become active after being ’launched’ from the parent; (ii) ownership, i.e., only owners of the platforms are
able to move, carry a pursuit or attack with them, or launch sub-platforms; owners of parent platforms
are not necessarily owners of the sub-platforms; (iii) sensors, i.e., specify effectiveness ranges for task
detection, measurement, and identification or classification; (iv) geographical location, i.e., (xm, ym); (v)
maximum velocity vm, that defines how fast a platform can travel; and (vi) resource capability vector
[r̂m1, r̂m2, ..., r̂mL], where r̂ml specifies the number of units of resource type l available on platform m. A
platform can be used to attack any task, but the ranges of platform’s weapons depend on the task type
or class. Assets must be routed among task locations to execute the assigned tasks. Assets can begin to
process the same task at different times, but must be synchronized to complete a task in a specified task
processing window.

A decision-maker (DM), DMj (or simply j), is an entity with information-processing, decision-making,
and operational capabilities that can control the necessary resources to execute mission tasks, provided
that it does not violate the concomitant capability thresholds. In the current simulation context, the DMs
are commanders who have the ownership/control over their assigned assets, and make decisions about
which tasks to select for execution and with which assets.

C. Agent Model

i. Overview
The optimization-based dynamic task processing agent framework for the DDD simulator [2] was

adapted for the current study by adding features relevant to a SPEYES security system. These included
patrol routes and smart dynamic assignment of SPEYES assets. The architecture of the agent-driven
simulation framework is shown in Figure 4.a and b. The Shared Data Storage (SDS) provides the DDD
state variables (estimates of own and adversary states) that serve as agents’ situation awareness (SA). The
Agent Data Storage (ADS) holds agents’ normative behaviors that are specific to a given environment
(e.g., geographical responsibility for each decision-maker, possible patrol routes), the various mission
monitoring, and (re)planning data and measures.

In the DDD environment, each DM is equipped with a set of assets that determine the DM’s resource
capability, as well as SA. In this environment, SA represents the ability to monitor task and/or asset status,
to detect existence of tasks, measure characteristics of tasks, and classify tasks. Situational awareness of
a DM is limited by the constraints of his assets. A DM may not be aware of the existence of a task, if
the task is outside his asset coverage. Such knowledge has to be communicated among DMs within a
team (among coordinating partners) to enhance the team’s collective SA. The current implementation
addresses this communication issue as additional delays among DMs, which results in delays in task
completion.

6

Task Processing
Phases

Multi–Agent Network

Event-Based Task-
Asset Assignment

DDD Simulator

(b) DDD-Agent Interaction Schema

Detect Task

Allocate Assets

Prosecute

Execute (Attack)

Task Completes

Task Appears

Measure Task

Dynamic Mission
& Event Data

Task Execution and
Status Update

(c) Task Processing Phases

DDD
Simulator

DDD
Simulator

DDD State
Module

DDD State
Module

ADS

Agent
Module

Agent
Module

SDS

(a) Core Architecture

DDD Simulator

Identify Task

Fig. 4. Agent-driven Simulation within DDD Paradigm

In the SPEYES security system, the agents, which represented a set of cooperative DMs, employed
centralized asset-task assignment, and decentralized task execution, taking into account communication and
coordination delays across the team hierarchy (see Figure 5.a). The execution of a task can only begin
when all of its predecessors are completed (‘READY’), and all assets from the assigned asset group arrive
at the appropriate locations. In addition, an asset can only process one task at a time. The objective of
task-asset assignment is to distribute the available assets among tasks, such that the overall mission
completion time is minimized.

To process tasks, agents follow a multi-stage process shown in Figure 4.c. When a task appears in
the scenario, it should first be detected with appropriate sensors. Second, the task must be measured
to determine its attributes, and must be identified to determine its class. When the task is selected for
execution, the assets that will prosecute this task must be allocated. This is done according to task-resource
requirements, asset-resource capabilities, task and asset attributes, current utilization of assets (location,
assignment), and ‘attack’ and ‘be attacked’ ranges of the assets. The procedures for the centralized task-
asset assignment are outlined in Figure 5.b, wherein a set of selected ‘READY’ tasks are allocated to
groups of assets such that the aggregated resource capabilities meet or exceed the demands of the task.
The decentralized task execution involves coordinated launching of assets (subplatforms, weapons) from
their parent assets (platforms), movement of assets from their current locations to the task’s location, and
executing the task within a task-specific window of opportunity. The selected assets are moved by DM
owners using appropriate commands/controls into position within the ‘attack’ range of the task. When
assets come into position to execute the task, they start the attack phase, which takes the time specified
in the ‘duration’ attribute of the task.

ii. Formal Task Processing Procedures
The agent task processing procedures, outlined in Figure 5.b, adopt the multi-dimensional dynamic

list scheduling method (MDLS) [5], wherein it finds the platform-task allocation and mission schedule
by sequentially assigning tasks to platforms until the task set is exhausted. MDLS heuristic has two main
steps: (1) select the task to be processed; and (2) select the group of platforms to be assigned to it for
processing.

The priority of a task i, P (i), is influenced by the current assignment information and precedence
structure, such as the opportunity window to process task i, tai

; the value of task i, ωi; and other tunable
criteria, fc(i):

P (i) = fc(i)
ωi

1 + tai

(2)

A group of platforms, GROUP , is selected to process the selected task such that the task’s resource

7

WHILE READY set of tasks is not empty:
Select from READY a task i with the highest priority

WHILE i’s resource requirements are not satisfied
Select from FREE a platform with the
highest execution accuracy and minimum
impact on other tasks

END WHILE

Add task to ACTION queue
END WHILE

WHILE ACTION is not empty:
Select from ACTION a task i (breadth first)

Execute i: Launch, move, pursue, attack, …
END WHILE

Centralized
Asset-Task
Assignment

ADS Decentralized
Task

ExecutionSDS

����

��� ���

����	 ����
 ����� ����	 ����
 �����

Organizational Structure

Note: Overall communication delay across the hierarchy is
in general 5 mins (15 secs simulation time)

(a) Task Assignment and Execution Framework (b) Task Processing Procedures

Fig. 5. Task Assignment and Processing Framework and Procedures

Find the set:

READY 1 =

{

i ∈ READY |
∑

m∈FREE

rml ≥ Ril, ∀l = 1, ..., L

}

DO UNTIL READY 1 = ∅
Task selection:

i∗ = arg max
i∈READY 1

P (i)

READY 1← READY 1\ {i∗}
Platform group selection for i = i∗:
Find the set:

FREE1 =

{

m ∈ FREE|
L
∑

l=1

min (rml, Ril) 6= 0

}

vim = πim, ∀m ∈ FREE1
GROUP = ∅
DO UNTIL

∑

m∈GROUP

rml ≥ Ril, ∀l = 1, ..., L

m∗ = arg max
m∈FREE1

vim

FREE1← FREE1\ {m∗}

GROUP ← GROUP ∪ {m∗}

END DO

END DO

Fig. 6. Task and Platform Group Selection Procedure

requirement vector is component-wise less than or equal to the aggregate resource capability vector of
the group of platforms assigned to it:

∑

Pm∈GROUP

r̂ml =

nP
∑

m=1

ymir̂ml ≥ ril,∀l = 1, ..., L (3)

The notation ymi specifies the asset-task assignment such that

ymi =

{

1, if asset Pm is assigned to task Ti

0, otherwise
(4)

The DDD simulator requires concurrent task execution within a small time window by all assigned
platforms. Since the travel times of the assigned platforms differ, the closer or faster platforms should
wait for others before attacking the task or, alternately, all assigned platforms should synchronize their
departure times so as to arrive at the task location concurrently, viz., begin task execution together. The
goal of the platform group selection is to optimize the overall mission completion accuracy, as well as

8

the overall mission completion time. Accordingly, the task-asset assignment aims to balance the trade-off
between minimizing the completion time and maximizing the accuracy, while avoiding the allocation of
assets needed by other tasks. The first goal is operationalized by minimizing the travel time of platform
m to task i, τmi. The second consideration is realized by maximizing the ratio of accuracy when assigning
platform m to task i compared to assigning it to any other task j 6= i. Accordingly, the cost of assigning
platform m to task i, πim, is calculated as:

πim = τmi

ωi+1
ωi

αi
∑

j∈READY 1\{i}

ωj+1
ωj

αj

(5)

Accuracy of a task i assigned to platform m depends on task-resource requirements, platform-resource
capability, and task value, and is computed as follows:

αi =
100× ωi

nRi

L
∑

l=1

(

min (r̂ml, ril)

ril

)2

(6)

Note that nRi
represents the number of resource types that a task i requires.

One of the key improvements to the agent-driven DDD simulation in realistically depicting the relevant
aspects of a SPEYES system is the addition of a smart scheduling technique to enhance patrol effectiveness
[6]. This technique combines sensing and SA/C2 technologies. The sensing technologies include various
sensors to provide persistent surveillance, which are able to detect, identify, and track targets and identify
threats using ISR platforms operating at standoff distances, especially in urban areas in the presence of
obstructions such as buildings, canopies, foliage, camouflage, etc. The SA/C2 technologies incorporate
a dynamic scheduling technique, which utilizes the persistent ISR data to select the shortest and safest
patrol routes for asset maneuvers.

Specifically, the smart scheduling takes into account specified routes, which depicts roads in TC, as
shown in Figure 2. That is, the travel time of platform m to task i, τ im, is computed as the aggregate
time to travel the shortest distance following the safest connected segments of TC roads starting from
location m to location i, i.e., from (xm, ym) to (xi, yi):

τmi =
1

vm

min
SEGMENT

(

dm0 +
∑

k∈SEGMENT1

(

d(k−1)k

)

+ dnSi

)

(7)

Here, dm0, d(k−1)k, and dnSi represent the distance traveled from (xm, ym) to the first road segment, from
the current segment to the next, and from the last segment to the task location (xi, yi), respectively. The
notations SEGMENT and SEGMENT1 ⊂ SEGMENT denote the set of available and selected TC road
segments, respectively; nS represents the cardinality of SEGMENT1; and vm denotes the platform’s
maximum velocity. Note that due to constant presence of threats, whose data are accessible through
persistent surveillance, not all TC roads are safe to travel; unsafe road segments are deemed unavailable,
i.e., excluded from SEGMENT1. Accordingly, we have the platform group selection procedure shown
in Fig. 6.

III. SIMULATION RESULTS

A. Performance Measures

The force multiplier payoff for the technologies in the integrated SPEYES system was assessed in terms
of timeliness (e.g., throughput, latency, response time), efficiency (e.g., troops efficiency, assets damaged,
casualties), and effectiveness (secured area as a function of patrol units and incident rates with and
without the SPEYES technologies, task completion rate, failed tasks, detection coverage) measures. The
following is a summary of representative measures.

In our simulations, we have considered throughput measures for different task classes for both task
processing and identification (e.g., sensor detection throughput, which corresponds to the rate of detecting
IEDs, RPGs, and snipers). The overall task processing throughput, which is the ratio of the number of

9

tasks processed to the mission completion time, indicates the rate at which activities are accomplished
by the friendly forces:

Overall Processing Throughput =

nK
∑

k=1

nT
∑

i=1
σik

max
i

(0, si + ti)
(8)

Here, nK and nT denote the number of task classes and the number of tasks, respectively. The de-
nominator of the above equation is the mission completion time, which indicates the speed with which
the mission was completed. The variables si and ti represent the start and processing time of task i,
respectively; and

σik =

{

1, if task i of class k has been completed
0, otherwise

(9)

Similarly, the overall task detection throughput can be computed as follows:

Overall Detection Throughput =

nK
∑

k=1

nT
∑

i=1
δik

max
i

(0, di)
(10)

The variable di denotes the detection time of task i; and

δik =

{

1, if task i of class k has been detected
0, otherwise

(11)

One of the important indicators of how efficiently the friendly forces can prevent and suppress enemy
activities was the number of enemy attacks, which included attacks by IEDs, RPGs, snipers, and enemy
fighters. The impact of enemy attacks was assessed in terms of an overall casualty measure; this was
calculated based on the probability of friendly casualties due to a specific enemy attack. The probability
of casualty from a specific task class is denoted by pk. In the simulations, we assumed that pk of an IED
attack and a sniper or RPG attack is 50% and 20%, respectively.

Total Casualties =
nK
∑

k=1

nT
∑

i=1

nP
∑

m=1

(κikyimνmχmpk) (12)

Here, νm denotes the number of troops belonging to asset Pm; yim specifies the asset-task assignment as
defined in equ. (4); and

κik =

{

1, if task Ti belongs to task class k

0, otherwise
(13)

The notation χm indicates whether asset Pm is damaged

χm =

{

1, if asset Pm is damaged
0, otherwise

(14)

The troop efficiency signifies the average number of troops that are available to execute a single troop
task. The number of troop tasks is computed as the tasks that require troops and that cannot be executed
by other assets.

Troop Efficiency =

nP
∑

m=1
νm

nK
∑

k=1

nT
∑

i=1
λik

(15)

where

λik =

{

1, if task i of class k requires troops
0, otherwise

(16)

10

21.072.081.07
Troop efficiency

(# troops per troop task)

1.621.9441.5# Casualties

With
SPEYES

W/O
SPEYES

With
SPEYES

W/O
SPEYESMetrics

8:3011:486:2411:57
Mission completion

time (hours:min)

20472973# MFT Engagements

14.18.118.39.4
Total Throughput

(tasks per hour)

10.9

2

13.74.53.6
Sniper Detection

Rate
(# of snipers detected/hr)

21324
Enemy Attacks

(snipers, RPGs , IEDs)

AgentHuman

21.072.081.07
Troop efficiency

(# troops per troop task)

1.621.9441.5# Casualties

With
SPEYES

W/O
SPEYES

With
SPEYES

W/O
SPEYESMetrics

8:3311:486:2411:57
Mission completion
time (hours:min)

20472973# MFT Engagements

14.08.118.39.4
Total Throughput

(tasks per hour)

10.9

2

13.74.53.6
Sniper Detection
Rate
(# of snipers detected/hr)

21324
Enemy Attacks

(snipers, RPGs , IEDs)

AgentHuman

0

10

20

30

40

50

60

70

80

90

100

Mission
Completion Time

Throughput
(tasks

completed/hr)

Enemy Attacks
(RPGs, Snipers,

IEDs)

Overall Casualties Sniper DetectionP
er

ce
nt

ag
e

Im
pr

ov
em

en
t A

ch
ie

ve
d

by

S
P

E
Y

E
S

Agent Simulation
Human-in-the-loop

∆=18.7% ∆=6.6% ∆=4.1% ∆=2.4% ∆=1.5%

(a) One-to-one Comparison of Human and Agent Simulations (b) Comparison of Improvement Obtained with SPEYES

Fig. 7. The Agent-Human Result Validation

Another efficiency measure is the number of engagements by specific assets with troops (e.g., number of
engagements by MFT teams had a significant impact on speed of operations). The number of engagements
of an asset with troops can be computed as follows:

Number of Engagements by Asset Pm =

nK
∑

k=1

nT
∑

i=1

yimλik (17)

The organizational effectiveness is gauged by comparing the secured area, as a function of patrol units
and incident rates, of the aforementioned organizational configurations, i.e., without SPEYES technologies,
with SPEYES technologies, and an organization half the original size with SPEYES technologies. The
number of enemy attacks, overall troop casualties, and throughput are representatives of measures to
asses the increase in secured area due to SPEYES technologies.

B. Results and Discussion

A series of simulations were conducted to calibrate the agent performance with that achieved in human-
in-the-loop simulations. The differences between the agent and human task processing is largely attributed
to pre-planning and partial domain knowledge available to humans, but not to agents. The similarities
and differences between the performances of agent simulations and human-in-the-loop runs can be seen
in Figure 7.a. Despite the differences, nevertheless, the trends exhibited by human and agent simulations
were comparable, i.e., 1.5% ≤ ∆ ≤ 18.7%, (see Figure 7.b) and indicated consistent benefits accrued by a
SPEYES system.

To assess the impact of the SPEYES system, we conducted agent-based DDD simulations. Three afore-
mentioned TC mission scenarios (without SPEYES system, with SPEYES, and with SPEYES under a 50%
troop reduction) were considered. These runs addressed the improvements in timeliness, efficiency, and
effectiveness achievable with the SPEYES system.

The results, shown in Figure 8, demonstrated substantial performance improvements due to the security
technologies: (i) a significant improvement in task processing speed, which is indicated by an increase
of 42% in throughput and a reduction of 22% in mission completion time; (ii) a substantial improvement
in task processing efficiency, which is shown by a reduction of 85% and 93% in the numbers of enemy
attacks and overall casualties, respectively; and (iii) a sizable improvement in task effectiveness, which is
indicated by 47% improvement in troop efficiency, and an increase of 67% in the sniper detection coverage.
Furthermore, we found that even with the 50%-reduced force (3 platoons instead of 6 platoons), a force
with the SPEYES system was able to achieve a significant improvement in performance over regular
operations with a full force without SPEYES, thus confirming the force multiplier effects achievable by
utilizing the SPEYES system. These results supported similar evidence observed in human-in-the-loop
simulations in [1].

11

0

10

20

30

40

50

60

70

80

90

100

Throughput Troop Efficiency Sensor
Detection

W/O SPEYES

With SPEYES

With SPEYES at
50% Troop
Reduction

+42% +47% +67%

-2% +41% +67%

The Larger the Better

0

10

20

30

40

50

60

70

80

90

100

of Enemy
Attacks

Overall
Casualties

Mission
Completion Time

W/O SPEYES

With SPEYES

With SPEYES at
50% Troop
Reduction

-85% -93% -22%

-83% -89% +21%

The Smaller the Better

Fig. 8. Normalized Performance and Process Measures (∆ = improvement obtained with SPEYES system compared to without
SPEYES case)

Effects of Technology Classes on Throughput

7

8

9

10

11

12

13

14

15

W/O SPEYES +Sensing +SA/C2 +Shaping

of

 T
as

ks
/ H

ou
r

Effects of Technology Classes on Troops Casualty

0

5

10

15

20

25

W/O SPEYES +Sensing +SA/C2 +Shaping

T
ot

al
 C

as
ua

lti
es

∆∆∆∆ =11%

∆∆∆∆ =49%
∆∆∆∆ =12%

∆∆∆∆ =-29%

∆∆∆∆ =-62%
∆∆∆∆ =-2%

Fig. 9. SPEYES Component Technology Benefits (∆ = relative improvement compared to W/O SPEYES case)

Next, we conducted sensitivity analysis to evaluate the impact of specific classes of SPEYES technolo-
gies. In particular, we wanted to analyze the impact of sensing technologies; SA/C2 technologies; and
shaping technologies. Since the DDD simulations did not explicitly model SA/C2 functionality (e.g.,
information fusion, integrated threat maps, entity and behavioral threat models, etc.), the performance
contributions of the SA/C2 technologies were assumed to be embedded within the sensing and shaping
technologies and contributed two-third of sensing and shaping performance improvements. Figure 9
displays the relative performance improvements of SPEYES component technologies. The sensing tech-
nologies increased throughput by 11% and decreased casualties by 29%; the SA/C2 technologies improved
throughput by 49% and reduced casualties by 62%; and the shaping technologies enhanced throughput
by 12% and decreased casualties by 2%.

These results are intuitive and underscore the importance of the system integration component of
SPEYES, viz., combined sensing, SA/C2, and shaping technologies. The effect of the combined tech-
nologies was threefold. First, the soldiers obtained a better situational awareness about the threats that
should be avoided while on patrol and conducting regular security operations. Second, the information
supplied the troops with better and faster intelligence regarding problem areas, which enabled them to
react quickly and precisely; thus augmenting the force capability to respond to broader threat variety
and decreasing casualties. Finally, the combined SPEYES technologies provided threat deterrence, i.e.,
reduced the total number of hostilities throughout the mission.

IV. CONCLUSION

The focus of this paper was to present agent-driven DDD simulation model to evaluate a SPEYES
system in terms of timeliness, effectiveness, and efficiency of SASO operations on US and coalition forces.

12

The behaviors of the optimization-based DDD agents were calibrated to those of human-in-the-loop DDD
simulations. The agent-driven simulation results indicated that the integrated SPEYES technologies, which
included sensing, SA/C2, and shaping technologies, provided significant performance improvements to
the force across all measures. Even at 50%-reduced force, the SPEYES system maintained significant
performance improvements over regular operations with a full force and without a SPEYES system, thus
confirming the force multiplier effect introduced by utilizing SPEYES. The findings are in accordance to
the ones observed in human-in-the-loop simulation results presented in [1].

Acknowledgements
The authors would like to thank and acknowledge Daniel Serfaty, Keith Baker, Adam Bailey, Paul Titus,
Stacy Lovell, Gabriel Ganberg, Woody Spring, Fred Flynn and David Hurley, and the rest of the SPEYES
team for their support in improving the DDD simulator, developing performance and process measures,
and building SPEYES DDD scenarios.

REFERENCES

[1] Popp, R. , G. M. Levchuk, D. Serfaty, D. Allen, C. Meirina, F. Yu, S. Ruan, K. R. Pattipati, and M. Lazaroff. (2005). ”SPEYES:
Sensing and Patrolling Enablers Yielding Effective SASO,” Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT,
March 2005.

[2] Meirina, C., G. M. Levchuk, and K.R. Pattipati. (2003). ”A Multi-Agent Decision Framework for DDD-III Environment,” 2002
International Command and Control Research and Technology Symposium, Monterey, CA, June 2003, 21 pages.

[3] Kleinman, D. L., P. Young, and G. S. Higgins. (1996). ”The DDD-III: A Tool For Empirical research in Adaptive Organizations”,
Proceedings of the 1996 Command and Control Research and Technology Symposium, Monterey, CA.

[4] Kolesar, P. and Blum, E.H. (1973). ”Square Root Law for Fire Engine Response Distances,” Management Science, Vol. 19, No.
12, pp. 1368-1378.

[5] Levchuk, G.M., Levchuk, Y.N., Luo Jie, Pattipati K.R., and Kleinman D.L. (2002). ”Normative design of organizations-part
I: Mission planning,” IEEE Trans. on Systems, Man, and Cybernetics-Part A, 32(3):346-359.

[6] Ruan, Sui, C. Meirina, F. Yu, and K. R. Pattipati. (2005). ”Patrolling in Stochastic Environment,” Submitted to the 2005
International Command and Control Research and Technology Symposium, McLean, VA, June 2005, 10 pages..

