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Abstract 

 
The major focus in the joint-services area today is on Horizontal Integration (HI)– rapidly 
fusing and exploiting the data from different collection systems to speed the flow of 
correlated intelligence to war fighters, both for situational awareness and targeting. In this 
paper we discuss several technologies potentially useful in HI. They are Decentralized 
Data Fusion (DDF), NetCentric Architecture (NCA), and Analysis Collaboration Tools 
(ACT). DDF, NCA, and ACT could provide pathfinders and enablers for future 
implementation of HI across current 'stovepipe' collection and analysis systems. HI will 
ultimately require effective command and control of air, ground, naval, and space-based 
intelligence collection and dissemination systems. This control will be achieved through 
net-centric information management that includes dynamic links between a 'global' 
database and multiple locally maintained databases that contain data obtained from 
component stovepipe systems. The links between communication nodes will allow global 
information to be updated automatically with information from distributed assets. The 
motivation for providing connectivity and automated information sharing among 
distributed platforms/nodes is to increase the amount of information available at each 
node. The technology enablers for HI include, but are not limited to, the following: 
 

• Net-Centric Architecture (NCA)- A network architecture that gives component 
platforms access to multi-level security information and communications over a 
two-way encrypted TCP/IP connection allowing net-centric control and utilization 
of ISR assets.  

• Decentralized Data Fusion (DDF)-The DDF framework includes a proposed 
solution to the data fusion problem called Covariance Intersection (CI), as well as 
a solution to the information corruption problem called Covariance Union (CU). 

• Analysis Collaboration Tool (ACT)- NRL has developed an analysis 
collaboration tool (ACT) to be used for virtual collaboration in intelligence 
support. ACT is a second-generation tool for implementation of application 
sharing and collaboration between analysts. Second generation meaning that ACT 
can be used to collaborate complex analysis applications ‘out of the box’ without 
source code changes or the need for configuration management.  

 
1. Introduction 
 

In the past decade changes in the threat environment require a new operating 
model which integrates data from different intelligence sources and service components. 
This model has been called Horizontal Integration (HI) since it represents a shift from 
vertical systems (e.g. stovepipes), structured to support specific needs, to a horizontally 
integrated enterprise structured across multiple disciplines.  Current vertical systems call 
for actions to be performed by relatively autonomous functional nodes. In an HI 
environment these nodes are required to communicate via information networks. Each 
functional node incorporates the data it needs to perform its function and then processes 
and transmits its best available information for use by other nodes.  In some cases the 
information produced by a component node is unique. However, in many cases, 
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information is redundant and must be fused to produce an improved estimate. A current 
goal of HI is to increase the fidelity and availability of intelligence data. This will be 
achieved in part through a network-centric architecture (NCA) that will include dynamic 
links between a 'global' database and multiple locally maintained databases that could 
represent data obtained from component stovepipe systems. These links will allow global 
information to be updated automatically with information from distributed assets. For 
example, in carrier battle group operations, local track maintenance systems have moved 
in a similar direction with the evolution of multi-platform distributed sensing and 
tracking architectures that allow, multiple carrier group platforms to coordinate sensing 
and tracking assets in many-on-many engagement scenarios.  The intuitive motivation for 
providing connectivity and automated information sharing among distributed 
platforms/nodes is to increase the amount of information available at each node. [1] 

 
Effective HI will require an established framework for exploiting the benefits of 

decentralized data fusion (DDF) that ensures the evolution of consistent actionable 
intelligence among communicating nodes. Achieving this goal requires a solution to two 
major problems: (1) Invalid incorporation of redundant information and (2) Information 
corruption.  A unified solution for DDF that ensures information consistency in the HI 
environment is required. At present, there is no established framework for exploiting 
DDF. In Section 2 we propose a unified solution for DDF that ensures information 
consistency in the HI environment. This DDF framework includes a solution to the data 
fusion problem called Covariance Intersection (CI), and a solution to the information 
corruption problem called Covariance Union (CU). Finally, in Section 3, we discuss the 
technology required to achieve the effective human-to-human collaboration needed for 
HI. We discuss the use of a software tool, developed by NRL, called Analysis 
Collaboration Tool (ACT). ACT can be used to share and collaborate highly complex 
analysis tools ‘out of the box’ without source code changes, added software, or 
configuration management. ACT is also cross-platform meaning that full collaboration 
can be achieved between Intel-based, Sun, and SGI workstations.  
 
2.1 Decentralized Data Fusion with Redundant Information: Covariance 
Intersection (CI) 
 
The most serious problem arising in DDF is the effect of redundant information.  
Specifically, pieces of information from multiple sources cannot be combined using 
traditional methods unless they are independent or have a known degree of correlation.  It 
has been shown that maintaining correlation information in a fully general distributed 
processing network is computationally intractable. Specifically, currently proposed 
systems call for complex tasks to be performed by a large number of relatively 
autonomous functional nodes, which communicate via a complex information network.  
Each functional node retrieves (or is pushed) the information it needs to perform its 
function and then processes and transmits its best available information for use by other 
nodes. The key requirements for information to be effectively processed in a 
decentralized system are: 
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1. The information (reports) must have a well-defined measure of uncertainty and 
confidence.  

2. The fusion process must ensure that the database updates maintained by all 
entities are consistent. 

3. The data fusion method must be robust to failures in the network caused by, for 
example, communications disruptions. 

4. The connectivity of the nodes can be dynamically changed. 
5. The data fusion framework must be efficiently scalable, e.g., to networks having 

many nodes. 
 
For simplicity, the examples given in this paper will relate to combat systems and 
battlespace entities. The context can be transferred directly to intelligence product related 
counterparts. Virtually all real-world systems for tracking targets, e.g., aircraft or missiles 
from sequences of sensor measurements, represent information in the form of a state (or 
mean) vector with an associated error covariance matrix.  For example, the state of an 
aircraft can be represented as a vector, a, consisting of the aircraft’s estimated mean 
position and velocity, e.g., a = [x, y, z, vx, vy, vz]T, and an error covariance matrix A that 
expresses the uncertainty associated with the estimated mean.  If the expected error in the 
mean vector is e, then the error covariance matrix A is an estimate of the expected 
value/matrix of eeT, i.e., E[eeT].  The estimate is said to be consistent (or conservative) if 
and only if A > E[eeT], or equivalently, if A - E[eeT] is positive definite or semi definite. 
In words, an estimate (a, A) is said to be consistent if and only if its covariance A does 
not underestimate the actual expected squared error in its mean a.   
 
In many modern defense systems, information about targets is maintained in a 
distributed, or network-centric, collection of local tactical databases containing mean and 
covariance estimates of the states of relevant battlespace entities. So, continuing the 
example above, the estimate (a,A) relating to the state of an aircraft may be produced 
from a tracking system onboard a ship in a carrier group while a different estimate (b, B) 
of the same aircraft is produced by an airborne tracking system.  If these sea and air 
assets establish a communication link, they can in principle exchange their respective 
estimates of the state of the aircraft and fuse them to produce a better (i.e., smaller error 
covariance) estimate (c, C) that can be targeted with greater precision.   
 
If the error covariances A and B derive from statistically independent error processes, 
i.e., the estimates are uncorrelated, then a Kalman filter can be applied to fuse the two 
estimates to produce the improved fused estimate (c, C).  However, in virtually any 
practical application the estimates will contain correlated error components resulting 
from the use of imperfect kinematic and/or measurement models.  These correlations 
undermine the integrity of any Kalman filter.  This correlation problem plagued industrial 
and defense applications of the Kalman filter for over forty-five years! 
 
At present, most types of operational intelligence information is maintained in a variety 
of forms for a variety of different uses (e.g., precision target tracking, weapon-target 
allocation), and most of it consists of measured or estimated states of entities of interest 
that include associated measures of uncertainty, e.g., in terms of confidence or 
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geographical location uncertainty.  For example, the position of a target observed by an 
unmanned aerial vehicle (UAV) is computed from the UAV’s estimate of its own 
position as determined from GPS and onboard inertial systems and from the relative 
observed position of the target based on the range and bearing measurements of its 
sensor.  All of these components have known/modeled degrees of uncertainty that 
contribute to the overall uncertainty associated with the target’s estimated position.  This 
uncertainty is typically depicted graphically as an error ellipse.  Pieces of information that 
include measures of uncertainty are commonly referred to as state estimates. 
 
For example, consider a weapon system where estimates of the state of a target are 
maintained at two nodes that have access to common information sources, then the 
respective state estimates will be correlated to some extent.  Assume that the cross 
covariance information required for a Kalman filter fusion of the estimates is not 
available. If statistical independence is incorrectly assumed, then the fused estimate will 
be inconsistent, i.e., its associated error covariance matrix will underestimate the 
magnitude of the uncertainty associated with the mean state estimate.  An underestimated 
error covariance can lead to incorrect likelihood estimates for its destination and also 
affect weapon allocation. For example, if a target's state has a spuriously smaller error 
covariance, then a high-precision weapon may be misapplied.   
 
In order to avoid the potentially disastrous consequences of redundant data when using 
traditional methods, it is necessary to maintain cross covariance information.  
Unfortunately, it has been proven that in arbitrary decentralized networks it is not 
possible to maintain consistent cross covariance information. It is only possible in a few 
special cases, such as tree and fully connected networks, to avoid the proliferation of 
redundant information.  These special topologies, however, fail to provide the reliability 
advantage because the failure of a single node or link results in either a disconnected 
network or one, which is no longer able to avoid the effects of redundant information.  
More intuitively, it is the redundancy of information in a network that provides 
reliability, so if the difficulties with redundant information are avoided by eliminating 
redundancy, then reliability also will be eliminated. 

 
The problems associated with data fusion using correlated information have prevented 
the full power of decentralized architectures from being realized. What is needed is a 
framework that is able to fuse correlated/redundant information in a robust manner. 
 
Toward this end, a mathematical framework has been developed by Uhlmann and Julier, 
called Covariance Intersection (CI) that permits the consistent fusion of arbitrary pieces 
of information in a totally decentralized network [2, 3]. Specifically, given mean and 
covariance estimates {a,A} and {b,B}, a provably consistent fused estimate {c,C} can be 
generated from the following CI equations: 
 
                                                C  =  (wA-1 + (1-w)B-1)-1 
                                                 c  =  C(wA-1a + (1-w)B-1b),   
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where w in the interval [0,1] is a parameter that determines which measure of covariance 
size is minimized (e.g., determinant, trace, etc.). The fused estimate is guaranteed to be 
consistent regardless of the degree of correlation between the estimates to be fused. Any 
choice of w is guaranteed to produce a consistent estimate such that the covariance C is 
greater than or equal to the true squared error in the mean estimate c. This result 
circumvents the assumptions made in proofs that it is impossible to ensure nondivergence 
in decentralized networks.  Thus, for the first time, it is possible to place 
distributed/decentralized data fusion on a rigorous mathematical foundation. 
 
2.2. The Information Corruption Problem: Covariance Union (CU) 
 
In the intelligence context, the potential benefits HI are clear, but there are also clear 
operational obstacles that must be surmounted. Covariance Intersection completely solves 
the most general form of the data fusion problem. In practice, however, a different 
problem can arise before data fusion can even be applied.  In particular, what happens if a 
spurious or corrupted estimate enters the network?  The answer is that the spurious 
estimate will corrupt every estimate with which it is fused and every estimate that is 
subsequently fused with any of the newly corrupted estimates. In other words, 
information in the network becomes corrupted at a geometric rate.   
 
Specifically, what can be done if two estimates (a, A) and (b, B), purportedly relating to 
the state of the same real-world object, are statistically inconsistent with each other?  For 
example, if two mean position estimates differ by more than a kilometer, but their 
respective covariances suggest that each mean is accurate to within a meter, then clearly 
something is wrong. Resolving such inconsistencies among estimates is sometimes 
referred to as database deconfliction. 
 
A statistical method, Covariance Union (CU), has been developed that addresses the 
database deconfliction problem for mean and covariance estimates [3]. Specifically, a set 
of CU operations can be applied in a fully automatic fashion at each node in a network to 
ensure that estimates that are in conflict with the consensus of information in the network 
will be completely filtered out or strongly limited in their ability to propagate.  What is 
remarkable is that this capacity to eliminate spurious information is an emergent property 
of the locally applied operations - there is no centralized mechanism that tries to identify 
which pieces of information are spurious and which are not.  The CU mechanism 
provides two absolutely critical features: 
 

1. It provides a mathematically rigorous, yet computationally efficient, method for 
identifying pairs of estimates that are statistically inconsistent with each other 
according to a specified level of tolerance. The method alone cannot possibly identify 
which of the estimates is spurious/corrupted, but it provides a trigger for the 
application of the CU fusion operation.   
 
2. The CU fusion operation replaces two inconsistent estimates with a single estimate 
that is statistically consistent with both of the given estimates.  Such an estimate can 
be consistent with the two estimates only by having a sufficiently large associated 
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degree of uncertainty (i.e., large error covariance).  The CU mechanism is optimal in 
the sense that it constructs the estimate with the smallest possible sufficiently large 
covariance.  This estimate can be safely propagated and assimilated throughout the 
network.  It has been proven that the local application of the CU mechanism at each 
node can eliminate spurious/corrupted estimates in almost all practical situations 
without in any way adversely affecting the converged operational picture information.  

 
The Covariance Intersection method guarantees consistency as long as the system and 
measurement estimates are each consistent.  In the deconfliction problem it is only known 
that one of the estimates, either (a, A) or (b, B), is a consistent estimate of the state of the 
object of interest.  Because it is not generally possible to know which estimate is 
spurious, the only way to rigorously combine the estimates is to form a unioned estimate, 
(u, U), that is guaranteed to be consistent with respect to both of the two estimates. Such 
a unioned estimate can be constructed by applying convex or semidefinite optimization 
methods to find a mean vector u and covariance matrix U such that: 
 
                                                    

                U > A + (u-a)(u-a)T  
                                                    U > B + (u-b)(u-b)T  
 
where some measure of the size of U (e.g., determinant) is minimized.  This Covariance 
Union (CU) of the two estimates can be subsequently fused with other consistent 
estimates using CI.   
 
Intuitively, the above equations say that if the estimate (a, A) is consistent, then the 
translation of the vector a to u will require its covariance to be enlarged by the addition 
of a matrix at least as large as the outer product of (u-a) in order to be consistent.  The 
same reasoning applies if the estimate (b, B) is consistent.  Covariance Union therefore 
determines the smallest covariance U that is large enough to guarantee consistency 
regardless of which of the two given estimates is consistent. As a simple 2D example, 
suppose a=[0,0], b=[4,4], and each estimate has an error covariance equal to the identity 
matrix I.  If the two estimates are determined to be statistically inconsistent with each 
other, the optimal CU deconflicted estimate can be determined to be 
 

u=[2, 2],    U=   |  5   4  | 
  |  4   5  | . 

 
It is straightforward to verify that this estimate is in fact consistent with respect to both of 
the estimates: If (a, A) is the valid state estimate, then the covariance U for mean u must 
be greater than or equal to A + (u-a)(u-a)T, which it is. It can be verified that the estimate 
is also consistent with respect to (b, B).  Therefore, if either of the two estimates is a 
consistent estimate of the state of the object of interest, then the CU estimate is also 
consistent. 
 
More generally, for any set of n measurements in the same coordinate frame, e.g., (a1, 
A1), (a2,A2), ..., (an, An), in which one or more elements of the set is a measurement of a 
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system of interest, it is possible to construct a unioned measurement (u, U) that is 
consistent with respect to each element of the set of measurements.  In particular, (u, U) 
is defined by the following constraints: 
 
                                                    U > A1 + (u-a1)(u-a1)T  
                                                    U > A2 + (u-a2)(u-a2)T  
                                                                   : 
                                                    U > An + (u-an)(u-an)T  
 
This unioned estimate (u, U) is guaranteed to be consistent as long as at least one element 
of the set of measurements is consistent with respect to the state of the object of interest. 
Thus, CU effectively solves the database deconfliction for all cases except that in which 
every one of the measurements/estimates is spurious, and it can be argued that no 
solution can exist to cover that possibility because no information is actually available.   
 
3.  NRL Analysis Collaboration Tool (ACT) 
 
DoD has established a standard set of collaboration tools designated as the Defense 
Collaboration Tool Suite (DCTS). The tools permitted for use in a collaborative (human-
to-human interaction) environment are those that include Microsoft NetMeeting or Sun 
SunForum as the basic building blocks. DCTS also includes CUSEEME Networks, 
Meeting Point Servers, and Digital Dashboard. However, when intelligence analysts 
collaborate, it is usual that participants desire to use their favorite analysis tools. In most 
instances, these tools will not work within the framework of the current DCTS. This 
places a serious limitation on the value of real-time collaboration. 
 
In recognition of this limitation, the Naval Research Laboratory (NRL) has developed an 
analysis collaboration tool called (ACT) to be used for virtual collaboration in HI support  
[5]. ACT is a second generation tool for implementation of collaboration between 
analysts. First generation collaboration tools, exemplified by applications such as 
InfoWorkSpace (IWS), NetMeeting, and SunForum, are limited by the complexity of the 
analysis tools which can be shared and collaborated. In contrast, ACT can be used to 
share and collaborate highly complex analysis tools ‘out of the box’ without source code 
changes or added software.  ACT technology is also cross-platform meaning that 
collaboration can be between Intel, Sun, and SGI platforms. 
 
ACT is designed to work with existing DCTS applications, such as NetMeeting, 
SunForum, or SGI Meeting. The collaborative session works as follows: ACT is installed 
and run on a Host prior to the session. The collaboration session is started on the Host 
using NetMeeting, SunForum, or SGI Meeting. The collaboration host runs and shares 
the target application to all participants. Any participant can then take control of the 
target application using a ‘pass-the-chalk’ paradigm. During a session, all data remains 
on the host. Only analysis results (graphs, spreadsheets, etc.) are sent over the network. 
Consequently, data transfer requirements are minimized enabling operations over limited 
bandwidth networks.  
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Summary 
 
Achieving HI as an operational military capability is a long process. Critical to this 
process is the conduct of field experiments and demonstrations incorporating new 
technologies that enable ISR systems to fuse and exploit intelligence data. The bottom 
line will ultimately be significant improvements in the flow of intelligence information to 
the warfighter. As a small step towards this goal, in this paper we have discussed DDF, 
NCA, and ACT as technology enablers. We are hopeful that other organizations, with 
responsibilities for planning and conducting experiments/demonstrations, can use these 
technologies to help achieve a networked, information sharing military force across the 
battlespace.  
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