

THE SIMULATION OF SENSEMAKING AND KNOWLEDGE MANAGEMENT WITHIN A JOINT EFFECTS-BASED PLANNING SYSTEM

Paper #40

10th International Command and Control Research and Technology Symposium
Ritz-Carlton Hotel, McLean, VA

13-16 June, 2005

DENNIS K. LEEDOM, Ph.D.

Evidence Based Research, Inc. 1595 Spring Hill Road, Suite 250 Vienna, VA 22182 dkl-texas@cox-internet.com ROBERT G. EGGLESTON, Ph.D.

U.S. Air Force Research Laboratory
AFRL/HECS
Wright-Patterson AFB, OH 45433
Robert.Eggleston@wpafb.af.mil

Research Goal: Explicit Simulation of Knowledge Creation within a Joint C2ISR System

John Boyd's Original OODA Loop Model

Unowledge Greation

- Represent joint operational planning in terms of a hierarchical framework of abstracted knowledge elements
- Represent the tacit knowledge and expertise of the staff in terms of associational input-output matrices

Staff Collaboration

- Link staff workflows and collaboration patterns with the development of specific knowledge products
- Reflect the influence of technology, training, leadership, and organizational design on collaboration effectiveness

4th-Generation Warfare

Mao Tse-Tung
Ho Chi Minh

FSLN / Sandinista

Intifada / PLO

Unique elements of 4th-generation warfare...

- Strategic goal: **Defeat our political will** to engage in a region
- Strategy: Pursue *political*, *economic*, *and social actions*, engaging in limited military operations only when it furthers strategic interests (create impression of intractable struggle)

Hammes, T.X. (2004). 4th-generation warfare. Armed Forces Journal. November 2004

Implications for design of C2ISR functionality...

- Adversary is coalition of convergent interests, rather than single nation state
 → Identify and disrupt critical linkages that hold coalition together
- Adversary coalition consists of several tiers: leaders, supporters, civilian interests
 → Employ different approach to disrupting or manipulating each tier
- Multiple, overlapping networks exists across political, social, economic, religious, humanitarian, and military dimensions
 - → Understand the role, structure, and processes of each type of network

Multiple Dimensions of Knowledge Space

Enactment of a Wicked Environment

Wicked problem environment...

- Problem space is ill-structured
- No "right" solution, only "good enough"
- Problem-solving ends only when you run out of resources
- Unique/novel set of conditions and factors
- No second opportunities to do it again
- No obvious alternative solution

Sensemaking driven by action...

- Clarify/prioritize goals and constraints
- Characterize battlespace relative to these goals/constraints
- Identify key dimensions and variables predictive of cause/effect relationships
- Identify key obstacles to success
- Build solution paths to overcome obstacles

Future Joint Planning Rhythm (*Notional)

Modeling Challenges

- 1. Representing the Sensemaking Framework of an Effects-Based Planning Process
- 2. Modeling the Collaborative Process of Knowledge Creation within an Effects-Based Planning Process
- 3. Defining the Relevant Dimensions of C2ISR System Performance

Decomposition of an Effects-Based Knowledge Space

Abstraction Hierarchy

Abstract Knowledge Corresponding
Knowledge Products

Commander's Guidance & Intent

Analytic Knowledge

Mission Statement

Prioritized Effects List

Joint Target List

Concrete Knowledge

Knowledge Elements within an Effects-Based Operational Plan

Example #1: Setting Conditions

Cell 5 Covert Supply

Cell 6 Covert Supply Cell 7 Covert Supply

Cell 8 Covert Supply

Operational Phase: Setting the Conditions for Success

Example #2: Stability and Reconstruction

Linking Knowledge Products with Staff Workflow

Data/Frame Model of Individual Sensemaking

Sieck, W.R.; Klein, G.; Peluso, D.A.; Smith, J.L. & Harris-Thompson, D. (2004). *FOCUS: A Model of Sensemaking*. Fairborn, OH: Klein Associates, Inc.

Representing Individual Tacit Knowledge

Product

Model Actor "Real World Knowledge" Output Association 11 Output Association 10 Output Association 12 Output Association 2 Output Association 3 Output Association 4 **Output Association 5** Output Association 6 Output Association 7 Output Association 8 Output Association 9 Task Input Stimuli .7 Input Cue 1 Input Cue 2 .5 -.9|.9 **Input Cue 3** 8. .8 Input Cue 4 **Input Cue 5** Input Cue 6 Task Output **Product**

Matrix

Collaborative Integration of Tacit Knowledge

Of Expertise

Organizational

Command Intent → Joint Prioritized Target List

ACTIONABLE KNOWLEDGE STATE

COALITION OBJECTIVES

DESIRED ENDSTATES

CENTERS OF GRAVITY

FUNCTIONAL ELEMENTS

NODES / MISSION PACKAGES

1110101

Collaborative Output of Knowledge Association Task

1111100110011

Collaborative Output of Knowledge Association Task

111111110011100011

Collaborative Output of Knowledge Association and Vetting Tasks

Collaborative Output of Knowledge Association, Vetting, 2nd-Order Effects, and Antecedent Tasks

C2ISR System Performance

- This shift of modeling focus is motivated by the advent of 4th generation warfare and effects-based operations
- The approach is well-grounded in the socio-cognitive literature
- Key aspects of this modeling approach include
 - The explicit representation of knowledge elements that reflect the decomposition of command intent into prioritized targeting actions
 - The linkage of cognitive work flow and collaboration patterns with the effective (or ineffective) creation of these knowledge elements

QUESTIONS?