Command and Control of Autonomous UxV’s

June 2005

Chad Hawthorne
Dave Scheidt
Applied Physics Laboratory

- University-Based Applied Research and Development Laboratory
- Focus on National Security
- Major Effort in Space Science and Technology
- Partner in Johns Hopkins Commitment to Education and Medicine
- ~3,350 Staff
Future Unmanned Battlespace

• Thousands of UxV’s and stationary unmanned sensors
• Hundreds of flavors of UxV’s and sensors (heterogeneous environment)
• Significant increase in automation required
• Human operators will provide high-level goals to UxV’s for autonomous operation
Challenges

• To achieve the future unmanned battlespace:
 – Autonomous vehicles
 – Sensor and UxV’s coordination
 – Robust to failure (communications, hardware, peer)
 – Long operational periods
 – Decentralized control

• APL areas of work:
 – Autonomy
 – Simulation
 – Decentralized Communications
 – Command and Control
Decentralization

- New techniques in control of Unmanned Vehicles and a decentralized computing environment require rethinking of C2
 - Decentralized AI
 - Behavior Based System
 - Swarming
 - Decentralized computing environment
 - Mesh networks
 - Service Oriented Architectures
 - Decentralized Command and Control
 - Heterarchical organization
Decentralized AI

- Swarming as AI Solution
- Biological systems provide insight on problems
- Swarm of ants
 - Decentralized control
 - Massively distributed
 - Robust to failures
 - Self-organizing, Self-regulating

- Ants maintains own “world model”
- UxV are agents in the swarm
Swarm AI Behavior

Stigmergy – “a method of communication in decentralized systems in which the individual parts of the system communicate with one another by modifying their local environment.”

Examples: Flock of Birds, Wolf Packs, Foraging Ants
Platform Evolution

<table>
<thead>
<tr>
<th>Catch Phrase</th>
<th>3/N-Tier</th>
<th>Net Apps</th>
<th>Net Services</th>
<th>Next</th>
<th>After that</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Network Is the computer</td>
<td>Objects</td>
<td>Legacy to the Web</td>
<td>The Computer Is the Network</td>
<td>Network of embedded things</td>
<td>Network of Things</td>
</tr>
</tbody>
</table>

- **Scale**: 100s, 1000s, 1000000s, 100000000s, 1000000000s
- **Leaf Protocol(s)**: X, +HTTP (+JVM), +XML, Portal, +RMI
- **Directory(s)**: NIS, NIS+, +CDS, +LDAP (*), +UDDI
- **Session**: RPC, XDR, +CORBA, +CORBA, RMI, +SOAP, XML
- **Schematic**: SLID 2004-0258

Unknown

Note: Additional details and information are provided in the diagram and table.
Decentralized C2

• Historical Examples
 – Napoleon during Ulm Campaign
 – Japanese in Kamikaze Attacks
 – Germans in Battle of Atlantic

• Organizations operate most efficiently when command structure match their mission environment.
 – Decentralized AI
 – Decentralized Computing
Swarming as a C2 Solution

• For C2 environment to match mission environment, we must move from Hierarchical to Heterarchical Control

• Benefits of Heterarchical C2
 – Ability to perform a task is independent the organizations size
 – The decision loop is less than that in hierarchical C2 systems
 – The group as a whole is more survivable
High-Level Goals

- Protect Moving Convoy
- Deny Access to Basin
- Patrol Roads in Area of Interest
- Protect HQ
- Identify Mines in Surf Zone

Warfighter Ground Station

3/12/2003
<table>
<thead>
<tr>
<th>Automation Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Propagation Network

• Platform Independent
 – UGV, UAV, Windows Laptop, Handheld
 – Humans or sensors can provide input to network
 – Supports multiple operators simultaneously
 – Future embedded devices….

• Decentralized

• Robust in an unreliable environment
• Modeled after insect behavior
 – Observations about the world are translated into beliefs (pheromones)
 – Collection of beliefs constitute world model.

• Heterogeneous Swarm of Vehicles
 – Real and simulated robots working in concert

• Opportunistic Communications

• Heterarchical C2 environment
• Variation on classic AI paradigm of: Sense, Plan, Act
 – Sensor-based Observations are used to generate…
 – Belief about the current state of the world which in turn is used to devise an appropriate…
 – Behaviors to satisfy group goals and objectives. Behaviors are then used to generate…
 – Actions which translate into real world movements of the robot.
Conclusions

- Large Scale deployment of Unmanned Vehicles will require a rethinking of C2
- C2 environment should match mission environment
 - Heterarchical vs. Hierarchical Organization
 - Decentralized AI
 - Decentralized Computing Environment
 - Decentralized Command and Control