Enabling Coalition Operations with A New Standard for Group Security and Key Management

Presented by
Hugh Harney, and Rod Fleischer
SPARTA Inc.
7075 Samuel Morse Dr.
Columbia, MD, 21046
(410) 872-1515, Fax: (410) 872-8079
hugh.harney@sparta.com
• **Coalitions and Group Security**
• **Evolution in Group Security**
 – Group Secure Association Key Management Protocol
 – Secure Group Sessions
 – Secure Group Objects
• **Conclusions**
Coalitions are Complex Group

• A coalition is defined as a temporary alliance among people, organizations and nations to achieve a shared common goal.

• Information needs to get to many end users.
 – People
 – Organizations
 – Nations

• Policy is dynamic and complex
 – Multiple PKIs
 – Multiple accrediting authorities

• Many Internet services are used to move data
 – E-mail
 – Web Browsers
 – Peer to Peer Networks
 – IM
 – Chat
Evolution in Group Security Protocols

• Good News - Security Protocols are Evolving to meet Coalition Needs
 – Group Key Management Protocol
 » Introduced concept of Group Secure Associations
 – Group Domain of Interpretation
 » Group keying for simple broadcast
 – MIKEY
 » Group keying and policy for simple music streaming servers
 – GSAKMP
 » Group Keying
 » Group Policy Management
 » Scalable Infrastructures
 – IPSec multicast extensions
 – Secure Group Sessions, Secure Group Objects
 » Fundamental security building blocks for Secure Group Applications
• **GSAKMP**: Group Secure Association Key Management Protocol

 – Create groups of cryptographic keys that can be trusted
 » Mutual suspicion
 » Complete security policy definition and enforcement
 » Balanced security mechanisms
 – Scale to Internet sizes
 » Delegate and distribute KM processes
 – Peer to Peer software paradigm
 » Roles can be assigned
 – IETF Standards Track RFC to be issued.
GSAKMP - Group Controller

- **Group Controller**
 - Defines group policy
 - Creates initial keys
GSAKMP - Initial Joins

- **Group Controller**
 - Defines group policy
 - Creates initial keys

- **Members join the group**
 - Can become subordinate GCs
 - Can be key consumers
GSAKMP - Distributed Joins

- **Group Controller**
 - Defines group policy
 - Creates initial keys
- **Members join the group**
 - Can become subordinate GCs
 - Can be key consumers
- **Member can get keys from GC or S-GC**
- **Group membership is managed using group cryptography**
 - One message can reconfigure membership of receivers
Membership management

- **Groups must endure**
 - Member expulsions
 - Changes in group Policy
 - More restrictive
 - Merging with other groups
 - Splitting into sub-groups
Membership management

• Crypto trees
 – Allow efficient rekey of groups to reflect membership and policy changes.
 – One message can distribute new keys to all desired group members
Group Applications using GSAKMP

• Secure Group Sessions
 – VoIP Conferencing
 – Video Audio Teleconferencing
 – Data delivery to synchronized processing resources
 – Large data set applications

• Secure Group Objects
 – Web servers
 – Gnutella
 – Mail
 – IM
 – Chat
 – Push
Why not IPSec or SSL?

- **IPSec / SSL**
 - Point to Point Network/Transport layer connection
 - “Special” Server is in the middle
 » Server in the middle attacks
 » Server is security relevant
 » Costs to create, architect, manage secure servers
Why Secure Group Sessions?

- Secure Group Sessions
 - If security is separated, then perhaps we can use multicast to communicate
 - Use the network
 - Less congestion
 - Less points of failure
 - Simple is good
SGO - Multi-application, Multi-path
Conclusions

- **Coalitions need Group Secure Associations**
 - Dynamic policy
 - Multiple infrastructures
 - Group key and policy management
- **Separating security from the communications allows**
 - Freedom in choosing communications applications
 - Focus on the real security boundary
 - Moving cryptographic solutions closer to the real endpoints makes the architects job easier
- **GSAKMP is the basis for dynamic GSAs**
 - Standards Track IETF RFC
- **Group Secure (sessions and objects)**
 - Provide a common security basis for many group applications
 - Improve the existing coalition group security paradigm