Actionable Knowledge Guided HTC Visualization

Eric Lindahl, Qiuming Zhu, Jeffery Hicks, Plamen Petrov, David Andersen, and Alex Stoyen

21st Century Systems, Inc. (21CSI)
6825 Pine Street, Suite 101, Omaha, NE 68106
www.21csi.com, Email: info@21csi.com, Tel: 402.333.2992

21st Century Systems, Inc. Proprietary June 2005
Outline

I. Problem Statement
II. Introduction
III. System Overview
IV. Technique Description
V. System Implementation
VI. Conclusion
I. Problem Statement
I. Problem Statement

• Visualize Holistic Target Characterization
 – Focused on Commander’s Objective
 – Provide an meaningful and intuitive visualization of the possibly very large HTC

• Ability to display interdependencies and non-obvious relationships
 – Allow users to navigate & manipulate high order links and nodes
 – Provide multi-modal visualization of links and nodes
II. Introduction
II. Introduction (1)

Project Requirements

• Two & Three Dimensional Depiction of Links/Nodes & Entities/Relationships
 – Must work across multiple data formats
 – Allow for N-dimensional link/nodes analysis

• Rapid Scanning of Documents at Multiple Security Levels for Potential Relevance to Established Objective and Alert User

• Ability to Drill Down Rapidly to Underlying Data/Analytical Products

• Ability to Access Planning Tools via Web Portal
II. Introduction

- JIAPC will “…provide holistic analytical support to combatant commanders” - IO Roadmap.
 - Provide Holistic Target Characterization across the information, cognitive, and physical domains
 - Produce kinetic and non-kinetic options that facilitate the IO planning efforts of combatant command staffs
 - Decision Under Uncertainty
 - Offer all combatant commands connectivity to JIAPC knowledge base
II. INTRODUCTION

Actionable Knowledge Guided Visualization

• What is it?
 – Simply, it’s the maintenance of the commander’s intent WRT the mission objective throughout the visualization process.

• What’s in it for me?
 – Actionable knowledge allows more problems to be solved better, by both human and machine.

• How did you use it?
 – 21CSI used it to create the JIAPC Holistic Target Characterization Visualization; a multi-modal, semantic-based visualization.
III. System Overview
III. SYSTEM OVERVIEW (1)

Major Concepts

1. Visualize Asymmetric Relationships
 - Provide multi-modal semantic based visualization capable of showing relationships from amongst different types in different ways.

2. Facilitate Building Relationships
 - Efficient integration of evidence from multiple disparate domains into the HTC.

3. Tools for Analyzing Non-Obvious High Order Relationships
 - Propagating PMESII, or other weights in a meaningful way to analyze high order possibilistic structures.
IV. TECHNIQUE DESCRIPTION
Key Technical Points

1. Knowledge Visualization

- Knowledge Representation
 - Multi-modal visualization for multiple SME ontologies, knowledge representations
 - Ontological structures used for semantically guided visualization
 - Required for AKGHTC

- Semantic Distances
 - If one can be built for a significant frame of discernment, then the knowledge can have semantic tessellation
 - Semantic tessellation
 - Helps graph visualization
 - Force directed visualization
 - Voronoi clustering
 - Open research problem
 - Chosen according to heuristics
IV. Technique Description (2)

“Up to my knee-pits in data…”

2. Visualization Induced Malapropism

• Making a choice based on properties of the visualization rather than the data the visualization is supposed to represent. Very real danger!

 – Not the same as facile answers
 – What is ‘apropos’?
 • It’s the fitness to the ‘true’ AK representation
 – Chaining based on large datasets may result in waste of resources, or worse, propagate into tasking.

• Malapropos ‘Concept Checker’

 – Determine patterns of malapropisms
 – Requires a ontological changes
 – Very hard for cross-discipline CIE
3. **Actionable Knowledge Representation**

- **Ontology**
 - Basis for actionable knowledge representation
 - Knowledge is Inherently Consensual
 - Open-source ontologies and electronic dictionaries more likely to be vetted.
 - Provide ‘Rosetta’ translations to disparate domains with their own ontology

- **Semantic Distance**
 - Basis for metrics, strengths, clustering, specificity, etc.
 - Creates equivalence partitions for heuristics
 - (although, not sufficient for graph serialization)

- **Actionable Knowledge**
 - Provides additional weightings of utility
 - Utilizes existing ontology and semantic distance
 - Partially derivable risk/value models
V. SYSTEM IMPLEMENTATION
V. SYSTEM IMPLEMENTATION

JIAPC HTCV Application

• Multi-modal display of data
 – Semantically-tagged items equivalent throughout
 – Semantic Iconography
 – GIS correlated with Hyperbolic Graph
 – Integration with Tree Navigation
 – Integrates with Web and Office documents

• Leverages Underlying Expressive Ontology
 – Process driven
 – English-free concept IDs
 – Semantic strengths
V. SYSTEM IMPLEMENTATION (2)

JIAPC HTCV Web Access

• **Web-enabled Access**
 – Supports multiple roles
 – Integrated Rolodex
 – Integrates with other web resources

• **Process Specific Semantic Queries**
 – Concept graphs generate queries to DB, Web, or SME
 – English-free concept IDs
 – Keeps track of query results per node.
V. SYSTEM IMPLEMENTATION (3)

JIAPC HTCV Process Templates

- **Concept Graphs**
 - Canonical pre-built according to known planning processes
 - Nodes represent constraints
 - Drill-down to supporting concept graphs

- **Semantic Queries**
 - Concept graphs represent constraints and can be translated to queries
 - Color-coded for ‘fitness’ of the evidence for that node
 - Process measures according to the supporting evidence
VI. CONCLUSION
Benefits of the Technology and Extended Applications

- **Actionable Knowledge Improves Visualization of Massive Amounts of Data**
 - AK-based utility provides a basic design pattern for preference ordering and partitioning information, which reduces cognitive load
 - AKR structures can represent multiple translations of intent, which can be interpreted as context for the recruitment of appropriate visualization heuristics.

- **Rigorously Representing Mission Intent as a First Class Property of the CIE Improves Metrics of Effectiveness and Performance**
 - Higher resolution translation of the AK in multiple disparate domains improves compliance with the mission objective, and thus effectiveness.
 - Algorithmic translations of the AK allows for better leveraging of heuristics and more accurate preference ordering, reducing work for both human and machine, and thus improving performance.

- **Actionable Knowledge Provides a Bridge to Better Understanding Cognitive Modeling in C2 Applications**
 - AKR ontologies forms the basis for studying reusable actions WRT utility
 - Partitionable utility functions provide a better representation of the problem space than embodying cognitive artifacts within information architectures by fiat.
ABOUT 21CSI

- 21st Century Systems, Inc.® (21CSI®) is a pioneer in agent-based decision support systems for time- and mission-critical military applications
 - Woman-owned, founded in 1996
- Decision support tools across the spectrum of missions
 - Individual Soldier Situational Awareness
 - Distributed Warship Command and Control
 - Decision Under Uncertainty
 - Homeland Security/Force Protection Situational Awareness
 - Secure R&D Collaboration…*and others*
- Our applications run on all types of hardware…
 - Wireless PDAs
 - Laptops, desktops, to massive parallel computers
 …*and are Operating System independent*
- Military Small Business Contractor Success Story
 - 100% Commercialization Achievement Index
- Offices in: NE, MO, HI, WA, RI
 - Top Secret Facility Clearance