On the Building of a UML Profile for the Description of Army Architectures in the Context of Complex Systems

Presented by Éric Dorion

Mario Couture and Antoine Duval
DRRC-Valcartier
(June, 2005)
Summary

Context and problematic
Present and future needs
Elements of solution
Conclusion
Context and Problematic (1/4)

Context: Canadian military acquisition:

- Taking into account revolution in military affairs (3-block war, asymmetric threats, …)
- Considering increased capability of electronic communications, software, hardware, people, …
- Considering new associated complexities

→ Capability-Based Planning to replace threat-based planning
Context and Problematic (2/4)

Capability-Based Middle-out approach:
Both top-down and bottom-up are needed
Context and Problematic (3/4)

Thinking in terms of “Capability” involves:

• Being able to use, re-use, and merge autonomous systems and make them collaborate to produce capabilities

 → These form a complex System of Systems (SoS)

• Conceive, develop, and update all systems accordingly

• Better understand involved complexities and better control SoS behaviors during operations

• Consider the possibility of evolutionary approach for partial deliveries of capability
Context and Problematic (4/4)

In this simple example:

System 3 will be involved in two different SoS (1 and 2). It may contribute to achieve two different capabilities

➔ Three kinds of problems can be raised:

➔ Non-synchronization of efforts between acquisition projects

➔ The non-availability of information from other acquisition projects

➔ The misunderstanding of this shared information
Present and Future Needs (1/2)

To address this problematic:

- **Model and link** any relevant domain element and information that may have direct and indirect influences on the whole (at enterprise level)

- **Capture** (and dynamically keep updated) this set of linked models within a database and CASE tools (the architecture description)

- **Integrate** and link other models/meta-models/DB in this architecture description

- **Achieve complex searches** among this database

- **Produce holistic diagrams** (linked models of different nature) that show all aspects that need to be viewed
Present and future needs (2/2)

The main needs are:

- Use a **holistic approach** (instead of reductionism)
- Revisit traditional linear and stovepipe System Engineering disciplines
- Consider new theories like System Thinking, complexity theory, etc
- **Revisit traditional way of describing architectures**

Modeling languages should:

- Be easy to use and understand by any stakeholder
- Be flexible (allow the modeling and linking of any concept)
- Support new ways of doing engineering
- Be fully supported by CASE tools
Elements of Solution (1/8)

The used “architectural levels” for describing military architectures:

<table>
<thead>
<tr>
<th>Architectural Levels</th>
<th>Involved Stakeholders</th>
<th>Objects of Concern</th>
<th>Engineering Domain</th>
<th>Architecting Domain</th>
<th>Managmnt Domain</th>
<th>Other Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Level</td>
<td>End-Users</td>
<td>Business Objects & Processes</td>
<td>Business-related models</td>
<td>Business-related models</td>
<td>Business-related models</td>
<td>Business-related models</td>
</tr>
<tr>
<td>System Level</td>
<td>Engineers/Architects</td>
<td>System Design</td>
<td>Design-related models</td>
<td>Design-related models</td>
<td>Design-related models</td>
<td>Design-related models</td>
</tr>
<tr>
<td>Implementation Level</td>
<td>Developpers</td>
<td>Code files, Executables, Libraries</td>
<td>Devel.-related models</td>
<td>Devel.-related models</td>
<td>Devel.-related models</td>
<td>Devel.-related models</td>
</tr>
</tbody>
</table>

Holism: starts with the **2-dimensional integration** (through UML and CASE tools) of all relevant domain elements and information
Elements of Solution (2/8)

The solution adopted:

- **UML (and its extension mechanism)** was chosen as modeling language to support the description of military architectures
 - UML is relatively known and accepted, it evolves with needs (SYSML), it is well supported by CASE tools, …

A **UML profile** had to be conceived and developed to better model and link relevant domain elements that are of different nature (people, processes, technologies, and materiel)
 - This work is related to the building of the **Military Architecture UML Profile** (the **MAU-Profile**)

Defence R&D Canada • R & D pour la défense Canada
Elements of Solution (3/8)

We use a **dynamic** definition of “system” and “SoS”:

System: a system is made of **people** (person, group, association, organization, etc) that use **processes** (doctrines, standards, methods, etc), **technologies** (software, frameworks, standards, etc), and **materiel** (physical tools, vehicles, etc) to transform **inputs** into **outputs** within specific **contexts** and under specific **rules**

SoS: a SoS is an assemblage of normally **autonomous and independent systems** that **collaborate** with each other in order to get the ability to achieve a **mission-oriented set of actions** that allow the achievement of a **global mission**. This mission is understood and shared by all participating systems.
Elements of Solution (4/8)

The MAU-Profile is made of many **stereotype names** that add UML model elements appropriate military semantic.

The **foundation** of the MAU-Profile is mainly based on our dynamic definition of “System”.

It defines **8 main entries** specifying how stereotype names can be classified (and retrieved).
Elements of Solution (5/8)

Stereotype names are structured into a tree having 8 main entries, which correspond to the components of our dynamic definition of “system”.

It is a **generic structure** that offers a logical way to find stereotype names, no matter the domain.

Just a few stereotype names are shown here.
Elements of Solution (6/8)

Example 1: An over-simplified military acquisition system (class diagram: strategic view)

Organizations:
- Use systems
- Form complex systems
- Identify and describe capability gaps and architecture “to-be”
- Achieve acquisition
- Conceive training
- etc

Stereotype names
Elements of Solution (7/8)

Example 2: A over-simplified collective training “architecture” (class diagram: strategic and operational view)

Linking elements of different nature in the DB:

“Training Team” is linked to “Course of Actions” which is indirectly linked to “Lessons Learned”
Elements of Solution (8/8)

Example 3: An over-simplified C4ISR “architecture” (class diagram: operational and system view)

Modeling military materiel:

- **Packages** are used to group physical systems

- **Classes** may contain other classes (it should be possible to drill down into classes)

- **Strategic, operational and tactical model elements should be linked into the DB (holism).** Any model element that are logically linked in real life should be linked in the database
Conclusion

• The MAU-Profile is still under development, it remains to be validated and tested. More concrete examples are needed

• If used with appropriate CASE tools and DB:
 – It will favor holism
 – It will allow the sharing of relevant information and ease collaboration among stakeholders (no matter their domain of operation)
 – This will contribute to make the whole enterprise architecture updated, synchronous, and homogeneous (avoiding stovepipe projects like in the old threat-based planning)

• Having a holistic and dynamic description of the whole architecture will contribute to ease the understanding of new associated complexities (by using specialized tools like M&S for instance)