Using Near Space Vehicles in the Pursuit of Persistent C3ISR

Major Andrew Knoedler
Air Command and Staff College
Center for Strategy and Technology
225 Chennault Circle
Maxwell AFB AL 36112

10th International Command and Control Research and Technology Symposium
DISCLAIMER

The views expressed in this academic research paper are those of the author and do not reflect the official policy or position of the US government or the Department of Defense. In accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government.

ACKNOWLEDGEMENTS
OVERVIEW

• Battlespace Awareness
 – Kill Chain and C3ISR
 – Current Approach
 – Persistence

• Near Space
 – Environment
 – Threats

• Near Space Vehicles
 – Balloons
 – Airships
 – Aircraft

• Summary

NEAR SPACE VEHICLES COMPLETE
PERSISTENT BATTLESPACE AWARENESS
Battlespace Awareness (C3ISR)

- Command, Control, Communications
- Intelligence
- Surveillance
- Reconnaissance
- How we do it
 - Aircraft
 - Satellites
 - 24/7 with effort
 - Secure with some effort
Kill Chain

<table>
<thead>
<tr>
<th></th>
<th>Find</th>
<th>Fix</th>
<th>Track</th>
<th>Target</th>
<th>Engage</th>
<th>Assess</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical to that link
Persistence

- **Satellites**
 - Geosynchronous
 - 24/7 fixed coverage and lower resolution
 - Low Earth Orbit
 - Better resolution
 - Limited area coverage per pass
 - Constellations required, (e.g. Iridium)

- **Aircraft**
 - Manned
 - 8-12 hours
 - Unmanned
 - 6-24 hours
 - Constellation for full coverage
Persistence at a Price
Near Space

Near Space Begins
65,000 ft or ~20 km

Near Space Stops @ Low Earth Orbit
490,000 ft or ~150 km

Fun Facts
Temp: -140 to 2000° C
Wind: 0-40 kts (with excursions)
Density: 7% to ~0%
Ozone: max at 30km
Single Event Upsets/Ionosphere >50km

FAA controls <60,000 ft
Near Space Vehicles
The View from Up There

Texas 203k nm²
Colorado 78.6k nm²
Alabama 39.6k nm²
Rhode Island 1.2k nm²

Max LOS 168nm (89k nm²)
90° 4.1nm (53 nm²)
30° 2.4nm (18 nm²)

Max LOS 368nm (425k nm²)
90° 19.7nm (1219 nm²)
30° 11.4nm (408 nm²)

Max LOS 271nm (231k nm²)
90° 10.7nm (360 nm²)
30° 6.2nm (121 nm²)

Texas 203k nm²
Colorado 78.6k nm²
Alabama 39.6k nm²
Rhode Island 1.2k nm²
Threats
What Can Reach Up There?

65k ft

120k ft

130k ft

Ceiling 68k-78k ft

65k ft

162 nm

MiG-31

SA-5
Near Space Vehicles

- Balloons
- Airships
- Aircraft
Balloons

• Zero Pressure
 – Space Data Corp – Skysite®
 – USAF Demo – Combat Skysat
 – NASA – Long Duration Balloon
 • Antarctica 2004/05
 – Tethered Aerostats

• Superpressure
 – NASA – Ultra Long Duration Balloon
 • Feb 05
Airships

- Blimps
- Semi-rigid
 - Ascender 175
- Dirigibles (rigid)
 - Stratellite™
 - High Altitude Airship

Ascender 175
Sanswire One
High Altitude Airship
Aerosphere Prototype
Near Space Aircraft

• Traditional
 – Manned
 • U-2S
 – Unmanned
 • RQ-4 Global Hawk
 • Theseus
 • Proteus

• Alternate Fueled
 – Solar/Fuel Cell
 • Helios Global Observer
 • QinetiQ Zephyr
Persistence via Near Space
Near Space Vehicles

Weighting Matrix

<table>
<thead>
<tr>
<th></th>
<th>C3</th>
<th>I</th>
<th>S</th>
<th>R</th>
<th>Personnel</th>
<th>Tech Readiness</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balloon</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>RQ-4A/B</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>Long Endurance Airship</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Long Endurance Aircraft</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>

On a scale of 1 to 5: higher numbers are better
Summary and Recommendations

• Battlespace Awareness
 – Short of 24/7 persistence
 – Near Space Vehicles complete the picture

• The Way Ahead
 – DoD heading toward a funding downturn
 • Best return on investment
 • Same effect for less cost
 – Assess risk of investing in emerging technologies

• Commercial sector
 – Bear the brunt of development
 – Drive for cheap and ubiquitous wireless coverage
 – DoD could choose to wait and piggyback
QUESTIONS?
Picture Credits

Slide 1 Artist illustration of an Intelsat courtesy www.intelsat.com/resources/satellites.aspx
Artist’s concept of High Altitude Airship courtesy Lockheed Martin brochure www.lockheedmartin.com
Slide 5 Photo E-3A AWACS courtesy Global Security webpage www.globalsecurity.org/military/systems/aircraft/e-3-picts.htm
Repeat of artist illustration of an Intelsat
Photo of SA-5 Gammon missile on its launcher courtesy Russian Arms Catalog, 2000
Slide 11 Photo of a weather balloon climbing courtesy
Photo of Ascender 175 airship in its hangar courtesy JP Aerospace website www.jpaerospace.com/ascender175.html
Slide 12 Photo of TCOM 71M Aerostat courtesy TCOM website www.tcomlp.com/aerostats_What_aero.html
Artists illustration of fully inflated UDLB
Slide 13 Repeat of Ascender 175 photo
Photo of Sanswire One airship in its hangar courtesy Sanswire website www.sanswire.com/stratellites.htm
Repeat of artist’s concept of HAA
Slide 14 Photo of U-2S in flight courtesy Global Security website www.globalsecurity.org/intell/systems/u-2-pics.htm
Photo of Global Hawk in flight courtesy of Global Security website www.globalsecurity.org/intell/systems/global-hawk-picts.htm
Photo of Proteus in flight courtesy of Scaled Composites website, www.scaled.com/projects/proteus.html
Artist’s concept of Helios Global Observer courtesy of Mr Wierzbanowski at AeroVironment