

NETWORK AND DATA POLICY CONSIDERATIONS FOR EFFECTIVE NETWORK CENTRIC OPERATIONS

J. Katharine Burton Martin R. Stytz, Ph.D. Gregory N. Larsen, Ph.D.

Institute for Defense Analyses Washington, DC <u>kburton@ida.org</u> Institute for Defense Analyses Washington, DC <u>mstytz@ida.org</u>,<u>mstytz@att.net</u> Institute for Defense Analyses Washington, DC glarsen@ida.org

Change to network centric operations (NCO) is placing unprecedented demands upon the US military and its capability to rapidly adopt new technologies

- NCO places a premium on information timeliness
- Information as force multiplier
- > Technology, policy, and doctrine under development
- However, lacking in ability to effectively knit advances together to maximize effectiveness
 - Unclear how to translate policy into resource allocations
 - Network resources
 - Data

Need an overall systems engineering approach, point solutions are <u>not</u> likely to be scalable or sufficient

Introduction (cont.)

We examine network and data policies and issues to achieve effective NCO

- Technologies and policies
- Network and data control and management policy are critical
 - Address NCO needs
 - Manage and make effective use of network and control information flow
- Policies should be driven by needs and capabilities of users of NCO data
 - Also consider bandwidth, communication alternatives, priorities, and data security

Changes in policy must be made rapidly

- Placing a premium on cyber situation awareness and tools for translating decisions into policy
- But, lack metrics

Factors to Consider

- Mission for each organization
- > Battlespace state
- > Available communication channels
- User and commander data needs
- User and commander security demands
- These factors define the required veracity, timeliness, truthfulness and data verification requirements
- Need for speed and complexity point to need for intelligent agent assistance and tools

Network and Data Policy Requirements

- Capability of a NCO force correlates with ability of data to move to where it is needed
 - Effectively & efficiently
- Need to understand data volume requirement imposed
 - Let $I_{r_a} \leftarrow I_{s_b}$ be the instantaneous data volume between any source and recipient
 - Then, total data volume need for an organization is defined as:
 - $\bullet I_1 = \begin{pmatrix} n \\ \prod_{j=1}^n I_{r_i} \leftarrow \prod_{j=1}^m I_{s_j} \end{pmatrix}$
 - An effective NC organization must have as large an I₁ as possible

δω

At a given time, T, the data velocity is defined as: - (I₁₁ - I₁₁-1)/ I₁₁-1

Data traversal is defined as I₂, which is

$$- \mathbf{I_2} = \left(\left(\prod_{i=1}^{n} I_{r_i} \leftarrow \prod_{j=1}^{m} I_{s_j} \right) \right) \div \sum \left(\Delta t (r_i \leftarrow s_j) \quad \forall \quad (r_i \leftarrow s_j) \neq 0 \right)$$

- > I₂ must be minimized
 - No contention for bandwidth
 - Data moves promptly
- Must consider time required for priority data to arrive at its destination
 - Call this priority data y

- > I_{3p} is the average time for priority data to move all sources to all recipients of data of a given priority, *p*
 - P_y is the set of priority data of a given priority in movement at any time
 - P_y, y=1,x is the set of all priorities for data
 - I_{3_p} at time y is defined as:

 $\left(\left(\prod_{j=1}^{n} I_{r_{i}} \leftarrow \prod_{j=1}^{m} I_{s_{j}}\right)\right) \div \sum \left(\Delta t \left(r_{i} \leftarrow s_{j}\right) \left[\ni \left(\left(r_{i} \leftarrow s_{i}\right) \neq 0 \land \left(r_{i} \leftarrow s_{j}\right) \subset p_{y}\right) \right]\right)$

Allowing I₃ to be defined as

$$\sum_{y=1}^{x} \mathbf{I}_{3_{\mathbf{P}_{y}}} \div \mathbf{x}$$

I₄ is defined as the difference between when the data is needed and when it arrives at a recipient

- For a given time period
- Must be minimized for each recipient and the organization
- \succ I₄ for a recipient *r* is defined as:

 $\sum_{j=1}^{m} \left(t_{a_r} - t_{n_r} \right) \forall \left(I_r \leftarrow \prod_{j=1}^{m} I_{s_j} \Rightarrow \left(r_r \leftarrow s_j \right) \neq 0 \right)$

For the organization, I_4 can then be defined as: $\sum_{r=1}^{n} I_{4r}$

 $> I_3$ for a recipient must be minimized in order to minimize I_4

- I₅ is defined as the time differential between when the dat of a given priority is needed by a recipient and when it arrives
- \succ I₅ for a recipient is then defined as follows:

$$\sum_{j=1}^{m} \left(t_{a_r} - t_{n_r} \right) \forall I_r \leftarrow \prod_{j=1}^{m} I_{s_j} \quad \Rightarrow \left(\left((r_r \leftarrow s_j) \neq 0 \right) \land \left((r_i \leftarrow s_j) \subset p_y \right) \right)$$

Should approach zero for data of highest priority for each data recipient

Data Movement Efficiency

> Ψ

- Defined for each recipient at a given time
- Data efficiency is based on performance as measured by I₄
- > Ψ for a given recipient for a given time is defined as: - $\psi_{r\tau} = (I_{4r\tau} - I_{4r\tau-1})/I_{4r\tau-1}$

Further Considerations on Data Transport

> Data transport time, I_2 , is based upon

- Time spent in transit in a medium
- Time spent in computing devices
- Time spent in sensor systems
- Time spent in releasibility decision making
- Time spent in analysis

Transit, computing, and sensor times are nearly constant

- Key is minimizing releasibility and analysis time
 - Argues for automation of these critical but sensitive tasks
 - Intelligent agents
 - For prioritization as well as information overload management
 - Same conclusions appear to hold for I_3 , I_4 , I_5

Need an overall systems engineering approach, point solutions are <u>not</u> likely to be scalable or sufficient

Major Metrics Redux

Metric/	Definition
Variable	
I ₁	The volume of data moving from all sources of data to
	all recipients of data within an organization at any given time
I ₂	The average time for data to move from all sources to
	all recipients within a time period
I ₃	The average elapsed time for priority data of a given
	priority to move from all sources to all recipients of
	data of that priority at any given time.
I ₄	The time differential between the time when data is
	needed by a recipient and when it is received.
I ₅	The time differential between the time when data is
	needed by a recipient and when it received by the
	data recipient for a given time period for data of a
	given priority.
ωτ	Data velocity within an organization at a time τ
Ψ	The efficiency of the movement of data.

- Lacking tools and instrumentation to make required measurements in real time
- Lack insight into details, components, and placement of the metrics
- Must be able to deal with rapid changes in data transport requirements
- Intelligent agents are critical
- Technology preparedness is crucial
 - No alternative but to be at cutting edge of communication and computing technologies
 - Tools
- Simulation to gain understanding of metrics and their components is critical
 - No one solution for all situations, further complicating the challenge
 - Tools

Conclusions and Future Work

- NCO places a premium on network and computing technologies and policies
- We presented metrics to assess effectiveness of technologies and policies
- Need more detailed representations of the metrics
 - Experimentation and theoretical
 - Topologies, bandwidth, cyberwarfare, coalition, other factors
- Susceptibility to cyberoperations will determine effectiveness of a NCO force
- Coalition complicates NCO challenges
 - The metrics we propose can be used to assess effectiveness of coalition communication

Future Work

- Extend metrics proposed here
 - Develop component representations
- Need real-time network instrumentation to enable management of network
 - Sensors, data needed, dissemination
- Need training to prepare for cyberattacks
- Need insight into systems engineering for NCO networks
 - Better end-to-end engineering to insure efficient, prioritized data transport
- Better insight into user needs for data
 - Proper prioritization