Comparing OODA and Other Models as Operational View C2 Architecture

Tim Grant * & Bas Kooter **
* Royal Netherlands Military Academy
 TJ.Grant@mindef.nl
** MultiNeeds b.v.
 MultiNeeds@planet.nl
Outline

- Introduction
- Boyd’s (1996) OODA
- OODA as Operational View
- Comparison with other models
- OODA’s shortcomings
- Re-engineering OODA
- Further work
Introduction

“Beyond SA: closing OODA loop”

- Authors:
 Tim Grant: Professor, Operational ICT
 Bas Kooter: Independent consultant

- Royal Netherlands Military Academy:
 Faculty of Military Science, MOD (NL)

- Faculty’s research themes:
 Optimising operational resources
 Future wars
 Intelligent support for decision-making
 Technology-induced transformation
 Partnerships
 Availability
Boyd’s (1996) OODA model

- **Observe**
 - Observations
 - Implicit Guidance & Control
 - Outside Information
 - Unfolding Interaction With Environment

- **Orient**
 - Cultural Traditions
 - Genetic Heritage
 - New Information
 - Previous Experience

- **Decide**
 - Analyses & Synthesis
 - Decision (Hypothesis)
 - Implicit Guidance & Control

- **Act**
 - Action (Test)
 - Unfolding Interaction With Environment
 - Feedback
OODA as Operational View

Operational View

Systems View

Technical View

OODA
Comparisons (1)

- **OODA compared with:**
 - Wohl's (1981) SHOR model
 - Rasmussen (1983) three-level model
 - Mayk & Rubin’s (1988) review of 15 models
 - Klein’s (1998) RPDM model
 - Endsley’s (2000) SA model
 - Demming’s (1951) Plan-Do-Check-Act
Comparisons (2)

<table>
<thead>
<tr>
<th></th>
<th>OODA</th>
<th>SHOR</th>
<th>Rasmussen</th>
<th>Mayk</th>
<th>RPDM</th>
<th>SA</th>
<th>PDCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control loop?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detailed?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tempo?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning?</td>
<td>✓</td>
<td>✓ (1)</td>
<td>✓</td>
<td>(2)</td>
<td>(3)</td>
<td>√</td>
<td>(4)</td>
</tr>
<tr>
<td>Learning?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Interaction?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Peer review?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
OODA’s shortcomings

- Neither detailed nor formalised
- No guarantee of scalability
- Other agents not modelled explicitly
- Competitive interactions only
- Lacks psychological validity:
 - No domain state or world model
 - No concept of attention or memory
- Lacks deliberative planning process
- Lacks learning process
Re-engineering OODA (1)

- Re-engineering process:
 - Define requirements:
 - “Rational reconstruction” of OODA
 - Apply use-cases
 - Formalise using SADT:
 - Operational View architecture
 - Object-oriented analysis using UML:
 - Systems View architecture
 - Implement in Java, C# or Smalltalk:
 - For verification of Operational View
 - Real-time performance NOT optimised
Re-engineering OODA (2)

Diagram:

- **Observing**
 - Sensors
 - Prototypes
 - Orienting
 - Assessors
 - Prototypes (Observed prototypes)
 - Existing prototypes
 - Expected Situation
 - New/modified Prototype
 - Sensemaking
 - Sensemakers
 - Expectations
 - Sensemaking
 - COAs
 - Plans
 - Planners
 - Deciding
 - Decision makers
 - Accepted goal
 - Effects achieved
 - Selected Plan
 - Acting
 - Actuators
Further work

- UML analysis (in progress)
- Implement & test demonstrator
- Incorporate lessons learned in:
 - Operational View architecture
 - Systems View architecture
- Publish further papers:
 - Rational reconstruction (submitted)
 - Validation against 9/11 timeline
 - Planning niche
Any questions?