

Future Integrated Fire Control ICCRTS 2005

June 2005

CYBERSPACE

SPACE

OUTER

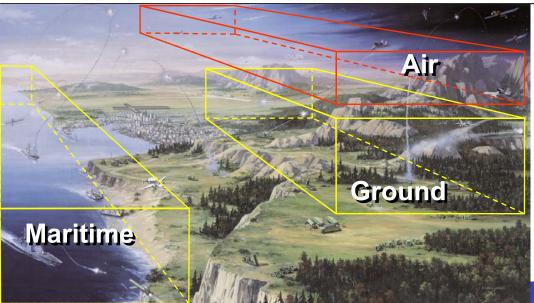
0

* JSX JAND YOXY

Bonnie Young Senior System Architect Northrop Grumman Corporation Bonnie.Young@ngc.com 703-407-4531 Future C2 Challenges:
Information Dominance
Most Effective Use of Joint/Coalition Assets & Forces
Dynamic Force & C2 Tailoring

> Remote Sensor

> > Elevated Coverage


Engage on Remote

> Remote Sensor

Engage on Remote Engage on Remote

-41

C2 Challenges for Future Warfare

• Non-interoperable pictures: air, ground, maritime

• Non-interoperable units: ships, aircraft, land assets, etc.

• Uncoordinated C2/Decisionmaking: use of weapons & sensors is "platform-centric"

• JEZ: achieve ability for aircraft & interceptors to share airspace

• IFC: achieve ability to utilize non-collocated weapons & sensors to perform fire control

• Enhance C2 decision-making to support time-critical Joint (& Coalition) operations

The role of C2 in warfare operations is to optimize the use of offensive and defensive resources to combat enemy threats.

Future advances in Joint C2 will rely on:

- Automated Decision-Making
- Advanced Data Fusion
- Enhanced Situational Awareness
- Distributed Resource Management
- Collaborative Time-Critical Missions
- Collaborative Planning & Dynamic Re-Planning
- Force-Wide Resource Optimization

Research Goal:

To explore concepts and develop capabilities that achieve shared battlespace situational awareness among distributed forces and optimize the management of distributed warfare resources for Force-centric collaboration.

Sponsors:

- Joint Single Integrated Air Picture (SIAP) System Engineering Org.
- Navy's Common Command and Decision (CC&D) System
- Johns Hopkins University Masters Program

Major Participants:

- Mike Green, Naval Post Graduate School, Monterey, CA
- William Canfield, Lockheed Martin, Moorestown, NJ
- Ray Thornber, Galaxy Scientific, San Diego, CA
- Capt Jeff Wilson & JSSEO Staff, JSSEO, Arlington, VA

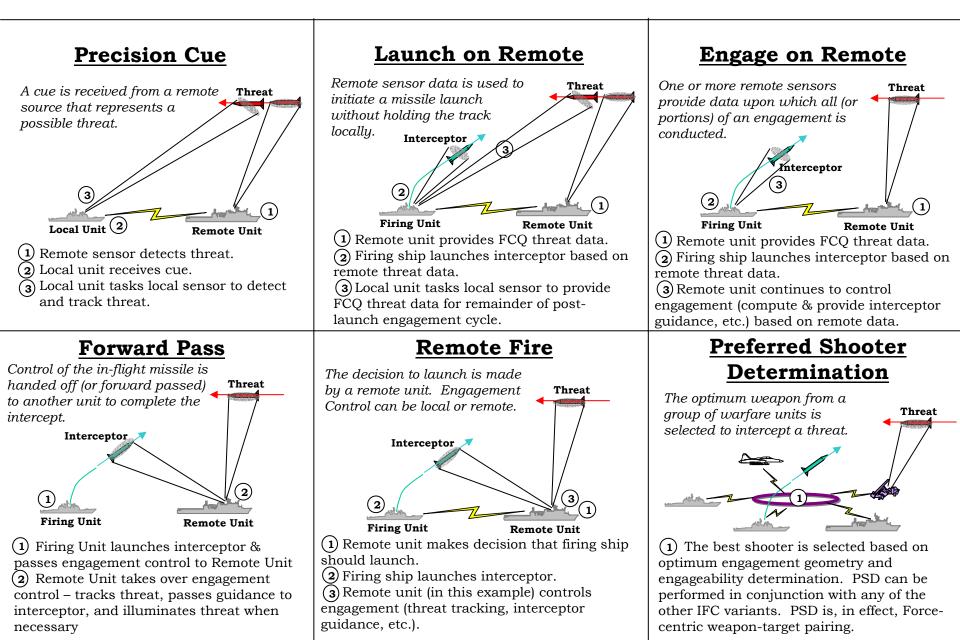
Integrated Fire Control C2 Design Considerations Future C2 Concepts Key Capabilities Required Conclusion

Integrated Fire Control (IFC) refers to the participation and coordination of multiple noncollocated warfare assets in tactical engagements of enemy targets

• IFC is the ability to develop fire control solutions from information provided by remote sensors

• IFC expands the weapon's effective kinematic range by removing dependency on range limits of the local sensors

• Future advances in aerospace warfare depend largely on IFC – the collaborative use of distributed warfare assets for time-critical aerospace engagements.


Why Integrated Fire Control?

The ability to direct distributed warfare resources in a collaborative manner enables major enhancements for tactical fire control:

- Selection of the best shooter from a set of geographically distributed weapons
- Improved chance of interception (by selecting the optimal engagement geometry)
- Improved economy of weapon resources (by reducing redundant shots)
- Earlier launch decisions are possible (remote detection/precision tracking)
- Decoupling of local sensor/weapon pairing constraint
- Sharing engagement control forward pass
- Off-board engagement support for guidance relay and target illumination

• Enhanced defense against complex threat environments (sophisticated or significant numbers of aerospace targets) – IFC may be a necessity for victory

IFC Variants

Fire Control Functions

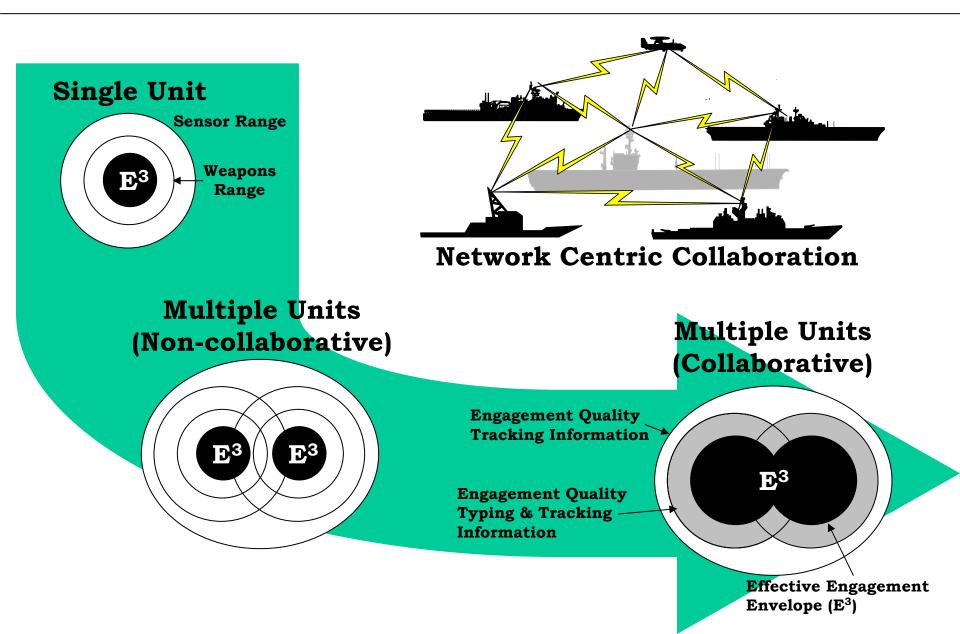
Fire Control Function	Function Description				
Object Observation	Sensor(s) observes aerospace object.				
Object Tracking & Identification	Object is tracked and identified – sensor measurements are used to estimate an object's location, kinematics, identity & intent				
Fire Control Quality Data Attainment	Data is obtained with enough accuracy and update rate to support engagement (launch decision, guidance calculations, and engagement control). (May involve sensor tasking or managing data path (dedicated or increased bandwidth))				
Engagement Initiation	Decision is made to initiate defensive measures against an air target of interest (includes: threat evaluation, engageability determination, shooter selection, sensor support selection).				
Guidance Calculation	Calculation is made of the interceptor guidance required to intercept target.				
Engagement Control	Warfare resources are managed during engagement: weapon control; tasking sensors & communication resources; ensuring resource commitment; monitoring resource performance; validating FCQ data; monitoring engagement support; and negating (terminating) engagement if necessary.				
Guidance Relay	Sensor or communication data path provides guidance (in-flight target updates (IFTUs) or target object maps (TOMs)) to interceptor while in flight.				
Target Illumination	Sensor illuminates target to support interceptor homing to target.				

Integrated Fire Control C2 Design Considerations Future C2 Concepts Key Capabilities Required Conclusion

Design Considerations

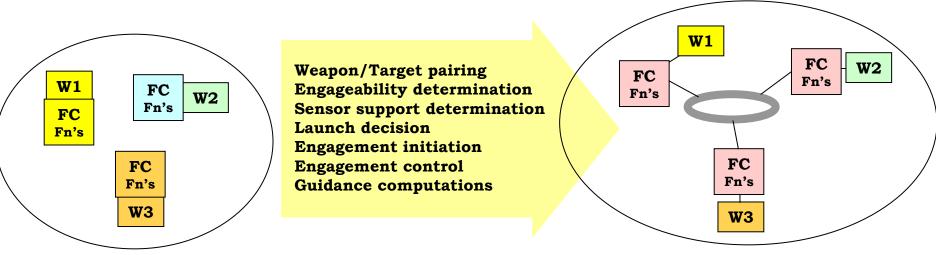
The manner in which C2 functions are performed determines the degree of integration achievable and the ability to control Forces from a Forcecentric perspective.

The key to achieving *integrated* C2 or fire control is the realization that common command and decision functions can be performed in a variety of manners:


- [1] Locally or remotely
- [2] From a Unit-centric or Force-centric perspective
- [3] Using unique or common processing
- [4] Centralized or De-centralized control
- [5] Manually or in an Automated-fashion

Local vs. Remote

	PC Precision Cue	LoR Launch on Remote	EoR Engage on Remote	FP Forward Pass	RF Remote Fire	PSD Preferred Shooter Determination
Object Observation	R	R	R	L or R	R	L or R
Object Tracking & Identification	L & R	R	R	L or R	R	L or R
Fire Control Quality Data Attainment	L	R & L	R	L or R	R	L or R
Engagement Initiation	L	L	L	L	R	Force Perspective
Guidance Calculation	L	L	L	L or R	L or R	L or R
Engagement Control	L	L	L	L & R	L or R	L or R
Guidance Relay	L	L	L or R	L or R	L or R	L or R
Target Illumination	L	L	L or R	L or R	L or R	L or R

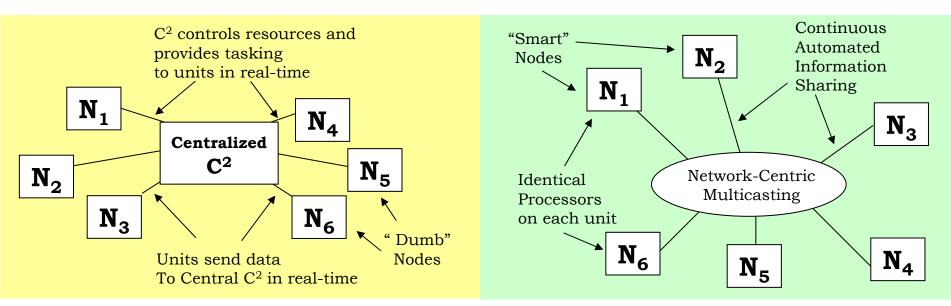

= Key function that, when performed remotely, distinguishes an IFC variant

Shifting to Force Level Thinking

Unique vs. Common Processing

Another challenge lies in the necessary paradigm shift to performing C2 functions in an identical manner at each node. This difficult, yet necessary, shift is key to enabling more advanced forms of C2.

• The fire control focus is unit-centric

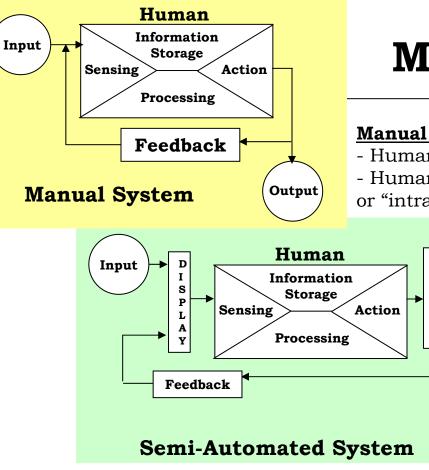

• Each weapon system is focused on it's own engageability—whether it's weapon will intercept the target

• Each weapon system cannot determine if it is the best shooter in the Force; and each will only consider local sensor support

• Forward Pass would be cumbersome if not impossible

- Fire control focus is Force-centric
- Requires access to information concerning all the relevant warfare resources within the Force
- Preferred shooter determination among Force's weapons is enabled
- Advanced forms of IFC requiring automation such as LoR and EoR are more effectively performed
- Performing fire control functions in an identical manner on each unit enables control of engagement to be more easily passed between units

Centralized vs. De-centralized



C2 can be performed using a centralized decision node approach; however there are major advantages to adopting a decentralized approach:

• The biggest factor is the latency involved in centralized C2. Aerospace warfare places high demands on rapid decision-making and responses - waiting for a launch decision to be made at a remote central decision node may not be an option.

• Distributing command authority for interceptor launch decisions to the unit level is a long-standing tradition and has its obvious merits.

• Equipping distributed units with common algorithms to produce identical engagement recommendations enables a decentralized, yet Force-centric approach and eliminates a single point of failure

Manual vs. Automated

Manual Decision-making

Process

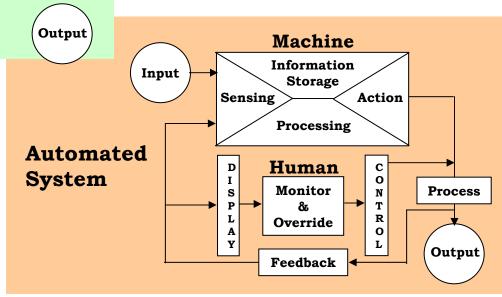
С

0

N

т

R


0

L

Humans make distributed collaboration decisions
Humans communicate over voice communications or "intranet chat" to commit resources for IFC

Semi-Automated Decision-making

-Humans make distributed collaboration decisions with aid of machine-fused & shared picture - Resource control, tasking, and commitment performed using automated feedback and control processes

Automated Decision-making

- Machines perform decision-making capabilities as well as feedback processing, information display, and control.

- Machine-generated decision options are presented to human for monitoring and command by negation (overriding automated decisions).

Command Authority

C2 must be designed to permit local control of warfare assets, thus maintaining organic command authority, while enabling Force-level optimized asset utilization, control, and collaboration across distributed warfighting units or hosts.

- Perform launch decision locally
- Use common decision aids that recommend resource usage (e.g., weapon-target pairing) with Force-wide perspective
- Ensure local operators always have ability to override local resource taskings generated in an automated fashion
- Maintain operator ability to manage resources manually

C2 Design Principles

The following design principles are key to advancing future C2 capabilities:

[1] Enable fire control functions to be performed locally or remotely

[2] Utilize warfare resources from a Force-centric perspective

[3] Shift common command and decision functions from unique methods to common processes

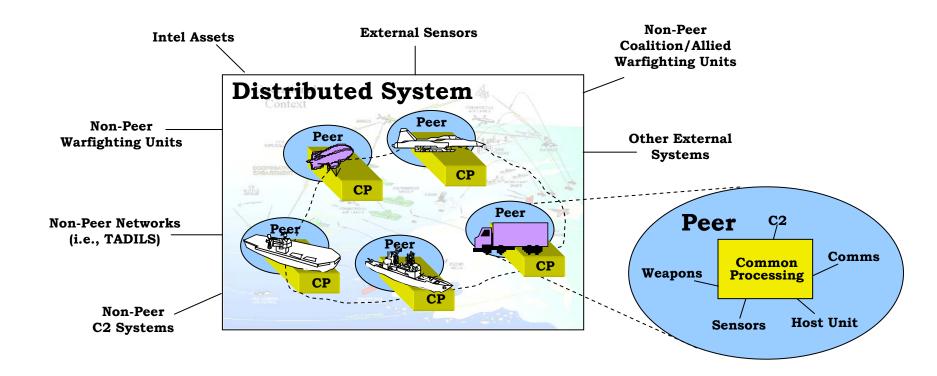
[4] Design C2 into a decentralized architecture

[4] Enable C2 decision-making to be performed in an automated-fashion

[5] Perform IFC while enabling local Command Authority

Introduction to IFC IFC Design Considerations Future C2 Concepts Key Capabilities Required Conclusion

Future C2 Concepts


[1] Implement an architecture that combines a network centric paradigm with automated intelligent management of sensors, weapons, and links to overcome individual system limitations and enable collaborative engagements; and
[2] Provide automated engagement decision aids that use
"common" algorithms and shared tactical data to simultaneously produce identical engagement recommendations at each distributed unit

Characteristics:

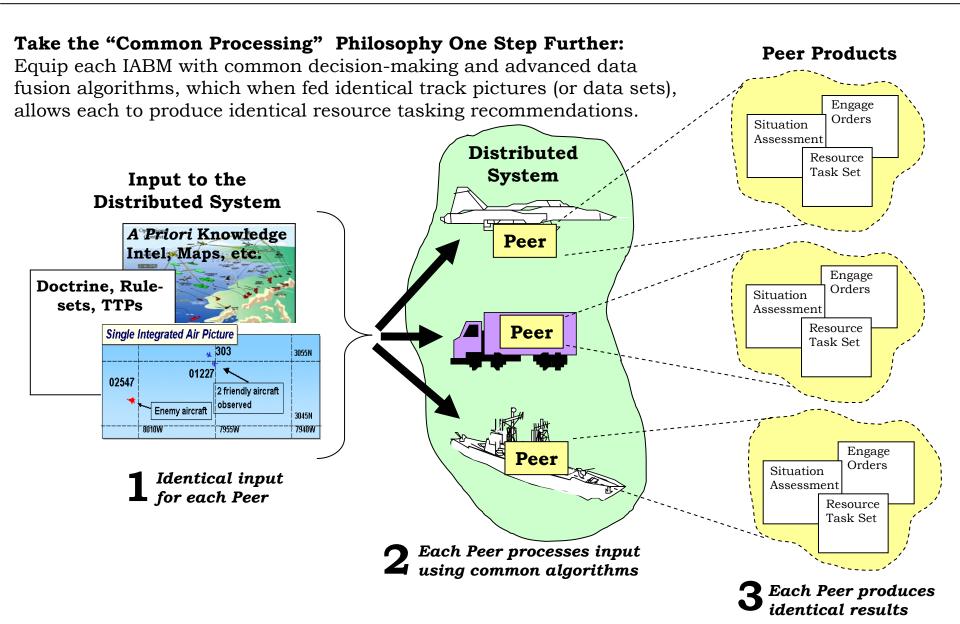
- Dynamically updateable doctrine
- Decentralized architecture
- Synchronized information,
- doctrine, decision aids

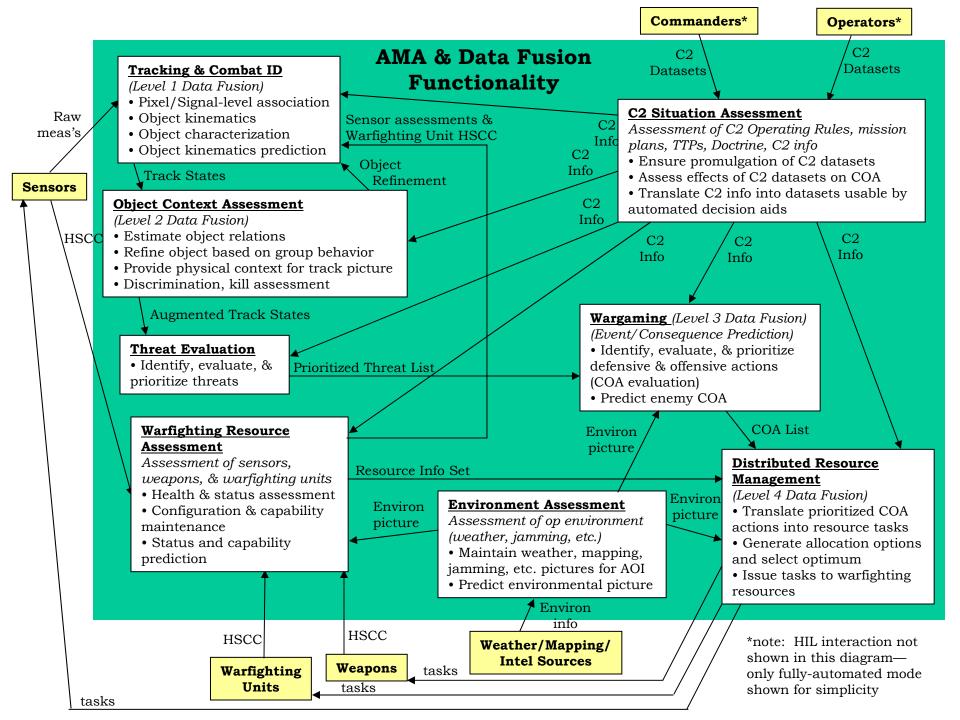
Each smart node determines optimum force-level resource management option & gains nodal agreement prior to tasking resources

Distributed System of Peers



- Each warfighting unit implements common processing algorithms to perform Joint tactical BMC2 functionality.
- A peer is defined as the common C2 processing integrated with a unit's warfare resources.
- A "system" of distributed peers interacts or collaborates by sharing information over a Peer-to-Peer (P2P) network.


Common Processing Philosophy


The philosophy, simply stated, is that common processing algorithms provided with identical data & information input will produce identical picture, assessment, and decision results.

Peer Product: Tactical Picture

Common Processing for C2

Common C2 Processing Products

Products of AMA and Data Fusion Process:

- Preferred shooter determination
- Weapon-Target Pairing
- Sensor Support for Engagements
- Engagement Control Strategy (i.e., forward pass)
- Engagement Preferences (intercept geometry)

Example: each distributed unit uses "common" algorithms to produce identical Force-level engagement recommendations. Therefore, each unit arrives at the same conclusion that a particular weapon has the best shot and that a particular sensor (not necessarily collocated with the weapon) can best track and/or illuminate the target.

Integrated Fire Control C2 Design Considerations Future C2 Concepts Key Capabilities Required Conclusion

Key Capabilities Required

Collaborating units need to determine:

- Preferred shooter
- Weapon-Target Pairing
- Sensor Engagement Support Strategy
- Engagement Control Strategy (i.e., forward pass)
- Engagement Preferences (i.e., forward pass)

What capabilities are needed?

- Shared Situation Awareness
- Determination of Best Course of Action
- Distributed Resource Management
- Embedded C2 Planning

Shared Situation Awareness...

The price

... is key because each unit needs identical, complete, accurate, & timely awareness (knowledge) of the operational situation.

Track Picture Fundamental track & CID data representation of aerospace objects.		Defended Assets Picture The location, status, & prioritization of all defended assets (ground, maritime, & aerospac as well as Blue Force, Coalition, & Civilian)). Includes defended aerospace objects and zones as well as points or areas on the ground within				
Estir	Object Context Picture Estimates of the group behavior of aerospace objects.		area of interest.	C2 Situation Picture Decision-maker commands, assigned missions of warfighting units,		
Environmental Picture Meteorological, electromagne atmospheric information con			netic jamming, & oncerning the doctrine, Tactics Techniques Procedures (TTPs), location a of IABMs, status of P2P netu			
reat Picture battle space area of interest. e identification, evaluation, and oritization of aerospace threat objects		rest.	Warfare Resources Picture The location, Health, Status, Configuration, and Capability (HSCC) information of each warfare resource (sensors, weapons, and warfighting units).			

Shared Situation Awareness (SA) is the ability of distributed units to gain an understanding of the totality of the tactical situation, including the threat, the defended assets, the readiness of warfighting resources, and command and control constraints within which the systems must operate.

Data Processing & Fusion

Shared SA relies on:

Data processing and data fusion algorithms to assess and develop a representation of the real situation

Situation Assessment Capabilities

Tracking & Combat ID

- Pixel/Signal-level association
- Object kinematics
- Object characterization
- Object kinematics prediction

C2 Situation Assessment

Assessment & Adoption of Blue Force C2 inputs

- Ensure peer promulgation of commands
- Translate C2 inputs into system operating rules, constraints, & parameters

SA Certification

- Assessment of track quality
- Assessment of track ID confidence
- Certification of fire control quality SA

Object Context Assessment

- Estimate object relations
- Refine object ID & typing based on group behavior
- Provide physical context for track picture
- Discrimination, kill assessment
- Maintain defended assets picture

Warfighting Resource Assessment

Assessment of sensors, weapons, & warfighting units

• Health & status assessment

• Configuration & capability maintenance

Environment Assessment

• Develop & maintain environmental picture (weather, mapping, jamming, etc.) for AOI

Peer Evaluation

- Assessment of Peer processing performance
- Peer health & status
- assessment

Threat Evaluation

• Identify, evaluate, & prioritize threats

Force Readiness Assessment

Fusion of assessments

• Determination of overall readiness of warfighting forces

Information Architecture

Shared SA relies on:

An appropriate information architecture to enable data sharing among distributed units.

<u>Peer-to-Peer (P2P) Network</u> <u>Capabilities</u>

Objectives for Information Sharing:

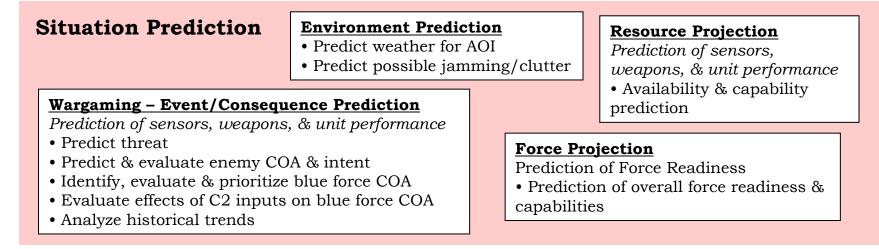
Based on Force-centric de-centralized architecture

- Allows warfare resources to be managed according to
- Force-level needs (rather than unit-centric needs)
- Manages network to enable special data distribution needs during engagements. (higher data rate or throughput)

Information Dissemination Capabilities:

- Determines needs of information-recipient users or decision nodes (data advertisements/ subscriptions)
- Tracks data availability
- Establishes routing paths & maintains connectivity
- Optimizes bandwidth usage
- Determines feasibility of transmission/checks link status
- Sends and receives commands to/from remote link managers to control, manage, & synchronize transmission
- Transmits data/information according to local/remote synchronized commands

Information Exchange Required:


- Associated Measurement Reports
- Resource information: HSCC
- C2 Datasets (Doctrine, TTPs, plans, manual commands)
- Resource Tasking Requests
- Resource Commitment "Handshakes"

Data Exchange Characteristics:

- Supports real-time P2P exchange of sensor measurement data
- Broadcast/Multicast/Point-to-Point
- Non-real-time traffic for operations control
- Link monitoring
- Quality of Service delivery
- Data integrity and confidentiality
- Bandwidth allocation/monitoring
- Data dissemination prioritization (for timesensitive data or bandwidth constraints)
- Ad hoc nodal topology (nodes can easily join or leave network)
- •Interfaces with Tactical Data Links (TDLs)

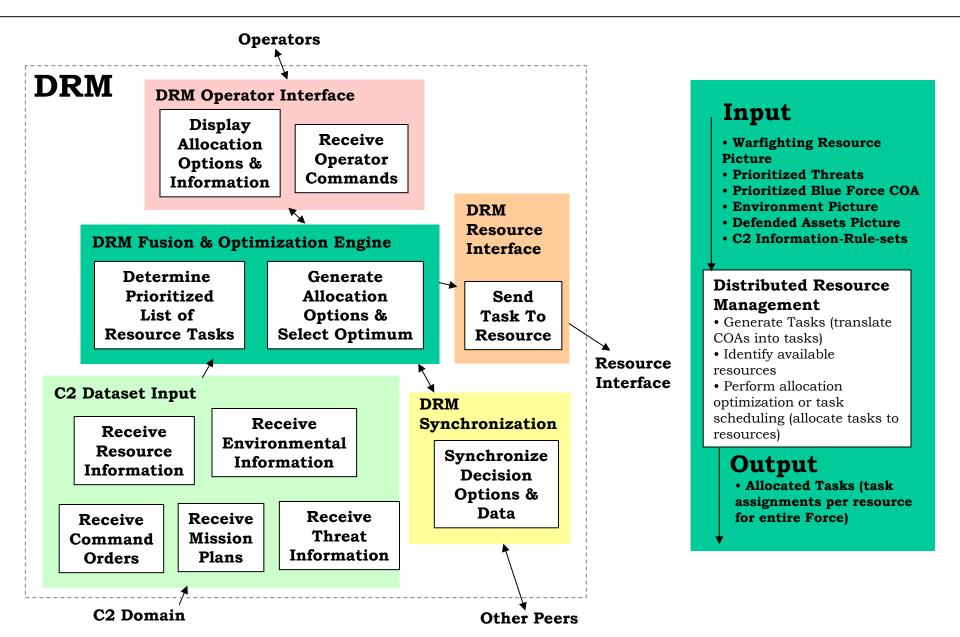
Determination of Best COA...

... is key for determining that a threat requires defensive measures taking into account possible ramifications (Effects Based Operations)

- Projects the current situation into the future to estimate the enemy COA and potential impact of the blue force's planned actions.
- Develops and assesses alternative futures or hypotheses concerning the current situation and possible COAs.
- Assigns quantitative confidence values to potential COAs
- Enables collaborative planning, effective resource management, and dynamic replanning

Distributed Resource Management...

... is key to enabling and optimizing the use of distributed resources for collaborative and integrated fire control


Distributed Resource Management	Selective engagement - Selection of best option if multiple engagement options along the threat trajectory exist			
Launch determinatio - Receive threat & COA - Assess engageability - Determine intercept p - Decide to launch (or	A determination of weapon options probability		Engagement support strategies - Threat detection/cue - FCQ data availability - Sensor tasking/commitment - Preferred sensor arrangement	Weapon-target pairing - Preferred shooter determination - Engageability of weapon options

• Based on the use of automated management (or decision) aids to determine and recommend optimum uses of warfare resources

- Using identical AMAs on distributed units enables decisions to be made in a timely manner to support time-critical engagement operations.
- Each distributed unit uses distributed resource management AMAs to determine tasks for all resources within the community of interest (COI)

• Resident operators always have ability to override resource tasking recommendations for local resources; thus command authority is upheld.

DRM Capability

Embedded IFC Planning...

... is key to the automated orchestration of IFC operations

Built-in planning prior to operations is a key enabler of AMAs:

- Predicting operational situations that require collaborative fire control
- Establishing prioritization schemes for missions, threats, defended areas, weapons, tactics
- Establishing rule sets to guide resource behavior for IFC operations
- Establishing parameters to control engageability calculations, target-weapon pairing, target identification/threat evaluation, & sensor tasking
- Establishing decision logic

Deliberate Planning is the predetermination

of resource utilization.

Defense Planning - "Macro" Planning

- Assigning resources to missions
- Allocating areas/zones within theater
- CINC priorities
- Identifying critical assets

Defense Design - "Micro" Planning

- Specific TTPs
- Rule sets
- Initialization parameters
- Correlation Track Quality Values

Dynamic Planning is the modification of plans during operations

Dynamic Planning Functions:

- Replanning dynamic creation of new plan
- Refinement of plan
- Reassignment of resources
- Ad hoc operations
- Alteration of rule sets
- Reset of parameters
- Reestablishing prioritization

Why Dynamic Planning is Useful:

- Plan implementation needs to reflect reality
- Resources change (things break, resources become unavailable)
- Enemy prediction never 100% accurate (unexpected events, enemy COAs, & threats)

Integrated Fire Control C2 Design Considerations Future C2 Concepts Key Capabilities Required Conclusion

Conclusion

• Using distributed resources in an integrated and collaborative manner takes advantage of network-centric advances and is the key to future air warfare and missile defense advances

• Design principles guiding advanced C2 solutions include a decentralized architecture, automating processes, using common fire control functions across the force, and using a force-wide perspective in managing resources

• The proposed strategy distributes C2 "power" to the edge: missile defense systems maintain self-contained command authority while also becoming full participants in force-centric family of systems

• Key capabilities required include: shared SA, determination of best COA, DRM, and embedded IFC planning.

BACK UP CHARTS

Development Strategy

Objective Capability Levels:

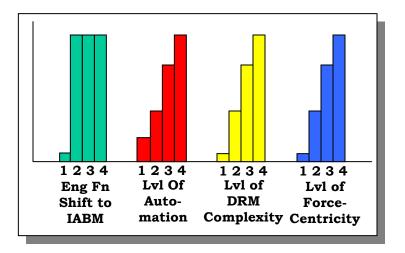
[1] Enhanced Air Picture: cleaner/better/common

[2] AMA for weapon/target & sensor/target pairing ("best" weapon, "best" target, "best" kill location, "best" tactics)

[3] Full AMA/DRM: IFC competes with other mission areas for resources

Development Strategy:

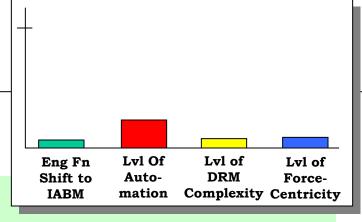
- > Develop system capabilities to reach at least level [2] objective
- > Build in increments or spirals that afford intermediate IFC capabilities


Spirals:

[1] NCW Foundation: Sharing high quality data for fire control

[2] Request-based IFC & common engagement functionality

[3] Basic semi-automated & force-centric IFC


[4] Fully Automated & Optimized IFC

1st IFC Development Spiral

> NCW Foundation: Sharing high quality data for fire control

System Capabilities Required:

- Track certification

- Enhanced networks for sharing measurement data with high rates and throughput

- Automated sensor task requests broadcast within COI
- Basic sensor request prioritization scheme (for when multiple requests are received)
- Engagement notification broadcast within COI

IFC Capabilities Achieved:

- Precision Cue receipt of a remote "cue" or alert of a potential threat target
- Engagement Notification notification to COI when a weapon fired

- **Request for Off-board Sensor Support** – request broadcast within COI for remote sensor data to provide precision cue (surveillance) or higher track accuracy.

- **Positive Interceptor Identification** – absolute (100% confidence level) identification of aerospace object within track picture that represents interceptor

- **Basic Launch on Remote or Composite** - engagement is prosecuted on the available filtered track state. However, the weapon system performs engagement functions and the local sensor must be capable of supporting the engagement after launch as a back up if the composite track state is not sufficient.

- **Semi-automated EoR** - Use of remote FCQ data to support EoR; however, remote sensor support tasking and commitment requires Operator (or manual) in the loop

2nd IFC Development Spiral

Request-based IFC & common engagement functionality

System Capabilities Required:

- Networks share sensor resource information (HSCC) among distributed units

Lvl of

DRM

Complexity Centricity

Lvl of

Force-

Eng Fn

Shift to

IABM

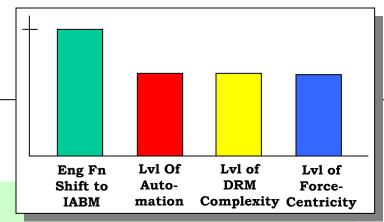
Lvl Of

Auto-

mation

- Automated sensor resource scheduling/prioritization schemes
- Self-monitoring (to determine incomplete picture or low quality track data)
- Automated weapon task requests broadcast within COI
- Intelligent application of best data fusion algorithms and best available data to produce most accurate target track
- Launch decision (engageability) functionality shifts from weapon system to IABM

IFC Capabilities Achieved:


- **Request-based EoR** – request broadcast within COI for remote sensor to provide FCQ data on threat throughout duration of engagement

- **Request-based Shooter Selection** - request broadcast within COI for remote weapons to intercept a particular threat

- Automated LoR (or composite) – IABM computes launch decision for local weapon based on composite track picture or best available data & data fusion processes

3rd IFC Development Spiral

> Basic semi-automated & forcecentric IFC

System Capabilities Required:

- Enhanced automated sensor scheduling techniques
- Request-based distributed resource management
- Basic automated management aids
- Basic deliberate planning

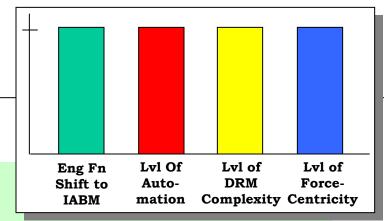
IFC Capabilities Achieved:

- **Enhanced Request-Based IFC** - All request-based IFC capabilities (such as EoR, selecting the best shooter, tasking sensors to enhance the picture) are enhanced because each distributed unit manages local sensors and weapons using automated common IABM processes (rather than having to interact with Operators or local sensor/weapon systems).

- **Basic Preferred Shooter Determination** - Distributed units simultaneously determine the optimum shooter for each threat based on their situation awareness of battlespace and weapon HSCC.

4th IFC Development Spiral

Fully Automated & Optimized IFC


System Capabilities Required:

- Advanced data fusion and situation assessment
- Advanced COA determination (effects based operations)
- Fully automated DRM
- Deliberate and dynamic planning

IFC Capabilities Achieved:

- **Automated IFC** – distributed units simultaneously determine the optimum distributed resource engagement strategies involving the best use of distributed sensors, weapons, and C2 resources; and then task local resources based on the Force-level determinations. Advanced IFC strategies achieved include:

- -Distributed sensor management
- -Preferred shooter determination
- -Automated EoR
- -Forward pass
- -Remote fire

