Architecting Command and Control Capability in the Networked Era

Topics: C2 Architecture, C2 Analysis, C2 Concepts and Organisations

David Cropley
Systems Engineering and Evaluation Centre, University of South Australia
Mawson Lakes SA 5095, Australia
Telephone: 61 8 8302 3301
E-mail Address: David.Cropley@unisa.edu.au

Yi Yue
Land Operations Division, Defence Science and Technology Organisation
PO Box 1500, Edinburgh SA 5111 Australia
Telephone: 61 8 8259 5687
E-mail Address: yi.yue@dsto.defence.gov.au

Stephen Cook
Centre of Excellence in Defence and Industry Systems Capability, University of South Australia, Mawson Lakes SA 5095, Australia
Telephone: 61 8 8302 3818
E-mail Address: Stephen.Cook@unisa.edu.au

Point of Contact: Yi Yue
Abstract. It has been widely recognised that to meet the challenges of developing Command and Control (C2) capability in the networked era, a rigorous design approach needs to be taken. The mandates of US DoD Architecture Framework (DoDAF) and its Australian variant – the Defence Architecture Framework (DAF) are the reflection of this trend. However, these frameworks only define the architecture products that are needed and do not recommend a methodology for architecting. Even though a few techniques are presented in DoDAF Deskbook, it lacks a systematic comparison and evaluation of various approaches. This paper seeks to redress this deficiency by firstly describing a framework for the rational, reasoned and traceable selection of a hybrid development methodology and, then by addressing the problem of integrating the candidate methodologies into a single, unified hybrid methodology that will meets the specific needs of the Australian Land C2 capability development context. The specific methodology developed in this paper could be described as a soft mantle with a hard systems core. Differing from other soft systems/object-oriented approaches, this paper establishes a mapping from component methodologies of the hybrid to DoDAF products via a common UML modelling medium.

INTRODUCTION

In the paper On Identifying a Methodology for Land C2 Architecture Development [1] the authors set out to provide a reasoned, rational and traceable process for assembling a hybrid methodology that will facilitate the creation of a Land C2 Architecture. The rationale for the work described in [1] was a perception that there is no single, optimal development methodology for the creation of a C2 capability, even though such a system may be considered an information system. The authors [1] hypothesised that a hybrid of existing methodologies could be created that would better address the particular needs of C2 system development. The creation of such a hybrid would, however, require a structured process.

The process for assembling a hybrid development methodology was achieved through the application of a framework, based on the work of Avison and Fitzgerald [2], for the analysis of a range of information system development methodologies. This is described in detail in [1].

What was not addressed in [1], however, was the mechanism by which such a hybrid methodology could move from the theoretical to the practical. In [1] the authors set out to show that a hybrid could be created in a systematic and rigorous manner, but the paper did not suggest how the hybrid would be implemented. That question must be addressed before a hybrid methodology for architecting a Land C2 system, or indeed any C2 architecture, can be
implemented. A key question that arises in the consideration of how to implement the hybrid is that of the interfaces between the methodologies (referred to as the component methodologies) that are combined in the hybrid.

In [1] the authors adopted Avison and Fitzgerald’s model of a system lifecycle [2], and identified five key phases of development: **Strategy**, **Feasibility**, **Analysis**, **Logical Design** and **Evaluation**. The manner in which the components of a hybrid are linked together will determine the success or failure of the hybrid. For example, how can the output of a Soft Systems Methodology (SSM) process applied to the **Strategy** phase of architecture development be adapted to act as a suitable input to a Structured Systems Analysis and Design Methodology (SSADM) process for the subsequent **Feasibility** phase of development? The purpose of the present paper is to suggest how the selected hybrid methodology might be implemented. In other words, it seeks to answer the question of how the component methodologies in the hybrid can be integrated as a single methodology. The present paper also addresses the question of how the hybrid methodology might be used.

Before addressing the question of the integration of component methodologies in the hybrid, a summary of the findings of the preceding paper [1] is given. In that paper a framework developed by Avison and Fitzgerald [2] was adapted to give a figure of merit for each of thirteen candidate methodologies across a wide range of criteria. The conclusions of that paper, summarised below in table 1, were that:

1. A hybrid methodology for Land C2 Architecture development *can* be formulated, and,
2. This hybrid methodology is better able to address the range of criteria needed for Land C2 Architecture development than any single (component) methodology on its own.

In this paper, the authors extend this argument to C2 systems more generally. In fact, two candidate hybrid methodologies, both equally suited to C2 Architecture development, were formulated. These two candidates differed in terms of their underlying philosophical approaches. One followed a traditional ‘hard’ systems paradigm, while the other followed an object-oriented, soft systems paradigm.

The two candidate hybrid methodologies derived in [1] and summarised in table 1 are:

- Information Engineering (IE) + Structured Systems Analysis and Design Methodology (SSADM).

The latter, softer, object-oriented candidate was preferred by the authors. Full details of the formulation of the two candidate hybrid methodologies are given in [1].

Table 1 outlines a number of Framework Elements used by Avison and Fitzgerald [2] to compare methodologies. Each of the thirteen candidate methodologies is grouped into one of six categories (“Process”, “Blended” etc) based on its foundational characteristics. In [1] the authors used a simple ranking system to assign a score to each methodology based on its perceived strength against each framework element. The results shown in table 1 show only the final qualitative rankings and give a summary indication of the methodologies that were assessed as strongest in each framework element. A complete description of the analysis is available in [1].
What was not addressed in [1] was how the component methodologies can be combined in such a way as to produce a single, unified hybrid methodology. The risk inherent in the approach set out in the previous paper is that, without a clear means for interfacing and unifying the components, the resultant hybrid methodology will be disjointed and ineffective. The task of integrating the component methodologies is central to producing an effective hybrid methodology.

Table 1: Summary of Favoured C2 Methodologies for each Framework Element [1]

<table>
<thead>
<tr>
<th>Framework Elements</th>
<th>Process</th>
<th>Blended</th>
<th>Object-oriented</th>
<th>People</th>
<th>Organisational</th>
<th>RAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STRADIS</td>
<td>YSM</td>
<td>JSD</td>
<td>SSADM</td>
<td>Merise</td>
<td>IE</td>
</tr>
<tr>
<td>Paradigm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope (hybrids)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold ticks represent methodologies that scored strongly against the framework elements while small ticks represent methodologies that scored weakly against the same criteria. No tick represents the failure of a methodology to adequately address a given framework element.

* = hybrid option 1, # = hybrid option 2.

THE PREFERRED HYBRID METHODOLOGY

Based on the results developed in [1] the preferred hybrid methodology for C2 Architecture development can be represented as shown in figure 1. The five phases that are deemed critical to architecture development (those that are relevant to conceptual design) are shown with the component methodology selected as most appropriate to that phase [1]. In two of the phases, Analysis and Logical Design, more than one component methodology scored equally highly. The choice of which of the components should be preferred in these phases, for use in the hybrid, must be resolved before the question of integration is answered.

Figure 1: Hybrid Methodology: Phases and Components
The analysis method used in [1] provided no definitive answer to the question of which of the components should be preferred. For this reason an additional, intuitive layer of analysis was also necessary. Two paradigms were used to guide the development of the hybrid methodology: either a soft systems approach or a hard systems approach. The authors’ preference was to incorporate soft systems approaches where possible and this dictated the choice of component methodologies. Of the three components, the SSADM methodology that appears as the preferred component for the Feasibility phase is the ‘hardest’ of the choices. It would therefore be logical, for the purpose of maintaining the philosophical ‘flavour’ of this hybrid, to select from either SSM or RUP for the Analysis and Logical Design phases. This argument must be tempered with the recommendation that it would be logical to minimise the number of changes between component methodologies, from one phase to the next, in the interests of improving and simplifying the integration of the components. Both aims – philosophical approach and simplicity of integration – are satisfied by the configuration shown in figure 2.

![Figure 2: The “Soft” Hybrid Methodology](image)

The preferred hybrid configuration shown in figure 2 maintains the soft, object-oriented focus that is dictated by the selection process summarised in figure 1. Soft Systems Methodology (SSM) provides the front-end of the hybrid in the **Strategy** phase. Structured Systems Analysis and Design Methodology (SSADM) is used to accomplish the **Feasibility** phase, while the object-oriented, Rational Unified Process (RUP) is the preferred approach for the latter phases of the hybrid. Figure 2 represents the final result of the process described in [1].

REPRESENTING THE C2 ARCHITECTURE

At this point it is necessary to return to the problem of how the C2 Architecture is expressed or represented. The US Department of Defense Architecture Framework (DoDAF) [3] or its Australian variant – the Defence Architecture Framework (DAF) provides a convenient means for describing architectures that result from any development process. The products described in the Architecture Framework are a means for describing the various features of an architecture [4]. Figure 3 illustrates the role of the DoDAF in relation to the parts of an architecture, available architecture analysis tools, and the DoDAF products (TV-n, SV-n, OV-n).

The desired end state of any development process is that the proposed hybrid methodology should generate a detailed description of the proposed C2 architecture. It is logical that this should take the form of a set of DoDAF architecture products as illustrated in figure 4.

The method required to transition between the component methodologies and the DoDAF medium is examined next.
OPTIONS FOR COMPONENT INTEGRATION

Having resolved the options for the components in the Analysis and Logical Design phases (figure 2), and having established a single medium for representing the resultant C2 Architecture (figure 4), the question of what options exist for the integration of the preferred component methodologies into a single, unified hybrid methodology can be addressed. In essence, a mapping between the component methodologies and the DoDAF products must be established. The question that is asked here is: how can SSM, SSADM and RUP be used to generate DoDAF products? This is a question which the DoDAF itself does not attempt to answer.
Component Integration

Two approaches to the integration of the component methodologies are apparent. The first - direct integration - represented in figure 5, requires the output of each preceding phase to be translated, or otherwise made ‘readable’, for the following phase. This approach ignores the role of the DoDAF as a common medium for representing the C2 Architecture. Thus, for the Strategy phase, the output of the SSM applied to this phase would be translated into a form suitable as input for the application of SSADM in the Feasibility phase. Similarly the output of the SSADM applied to the Feasibility phase would be translated into a form suitable as input to the RUP in the Analysis phase.

![Figure 5: Direct Integration: Translating Component Outputs](image)

This description highlights the inherent difficulty of a hybrid methodology. That is, how can a single, consistent model of the evolving conceptual design (the C2 Architecture) be achieved across three different methodological processes (and possibly three different tools)?

The second approach to the integration of component methodologies into a single, unified hybrid methodology is derived both from an examination of the components of the hybrid, and also the role of the DoDAF in describing and representing architectures in general (as shown in figure 3). This indirect approach is aided by, for example, [5] where it is showed that a mapping between prescribed architecture products (TV-n, SV-n and OV-n) in the DoDAF and the object-oriented domain represented in the Unified Modelling Language (UML) is possible. This mapping establishes an immediate connection between the latter phases (Analysis, Logical Design and Evaluation) of the hybrid methodology, the preferred component methodology for those phases (the object-oriented RUP methodology) and the leading format for representing and describing C2 architectures (the DoDAF). Figure 6 shows an evolving solution to the problem of unifying the components of the hybrid methodology.

The mapping between the UML and DoDAF/DAF products, established by [5] is summarised in Table 2.

The relationship between RUP and the UML is described by, for example, [6].
It is clear, from figure 6, that if it can be shown that the outputs from SSM and SSADM components can be represented in an object-oriented (UML) format, then it will be possible to
unify the hybrid C2 Architecture development methodology in a Common UML Architecture Model (figure 7). The end state of the C2 Architecture development process is a set of DoDAF products, derived from a Common UML Model that was generated from the activities of the component methodologies. The components methodologies build the common UML model, which can then be used to generate DoDAF products.

Furthermore, the Common UML Architecture Model gives a direct mapping to the range of DoDAF/DAF technical-, system- and operational-view products (TV-n, SV-n, OV-n) as shown in table 2. This has the added advantage that it provides a solution to the limitation of the architecture framework whereby no guidance is given on how to design or implement a specific architecture [3]. The hybrid C2 Architecture methodology, therefore, provides a mechanism for the implementation of the DoDAF/DAF.

The hypotheses posed in this paper are:

1. A specific, preferred hybrid methodology can be described.
2. That it is desirable to express that in the form of DoDAF products.
3. The components of that hybrid can be integrated through the use of a Common UML Architecture Model.
4. This provides a common language for linking the inputs and outputs of the different components that comprise the hybrid.
5. This makes it possible to envisage a single, unified hybrid rather than a series of linked, but disjointed, components.

The key to establishing this Common UML Architecture Model is the extant mapping of DoDAF products to UML diagrams established by [5], summarised in table 2.

Evolving UML Model

The role of the common UML model is to act as an interface between the component methodologies and the DoDAF products. The nature of the common UML model is that is
grows, or evolves, as the hybrid methodology is implemented (figure 8). Each component methodology contributes to, and can draw on, the evolving common UML model elements. This obviates the need for a direct mapping from one component methodology to another – the mapping takes place through the common UML medium. There still remains, however, a need to establish a mapping from the Strategy and Feasibility phases to UML before this approach can be implemented.

![Diagram of the Evolving Common UML Model](image)

Figure 8: The Evolving Common UML Model

LINKING COMPONENTS TO THE UML

Before the hybrid methodology can be used, a complete mapping of component methodologies to Common UML Architecture Model must be established. Figures 7 and 8 illustrate the proposed role of the UML model as a link between the component methodologies and the DoDAF products. [5], figure 6, show that for the latter phases of the hybrid methodology, this link is firmly established. However, for the initial phases, Strategy and Feasibility, there is no immediately apparent link between the components (SSM and SSADM) and medium of the UML. In order for the hybrid methodology to be fully realisable, this link must be established.

To establish a link between the phases of the hybrid methodology (based on [2]) and the UML this report recognises that three elements are necessary:

1. A mapping of hybrid methodology phases to traditional SE lifecycle and process stages.
2. Extant mappings of systems engineering process and lifecycle stages and UML products.
3. The resultant mapping between hybrid methodology phases and UML products.

Step 1, in effect, states that A=B. Step 2 states that B=C. Step 3 states that, therefore, A=C. The third step in the sequence thus establishes that all phases (including Strategy and Feasibility) of the hybrid methodology can generate UML outputs and therefore can contribute to the Common UML Architecture Model of the C2 Architecture (figure 7).
Mapping Hybrid Phases to SE Lifecycle and Process Stages

In order to show that SSM and SSADM can be mapped to the UML and therefore, by virtue of [5]’s mapping, to the DoDAF/DAF, it is necessary first to show that the methodology phases can be linked to the Common UML Model. To do this it is first necessary to revisit a model of the systems engineering process.

[7] sets out a clear, and widely accepted, model of the systems engineering lifecycle. In their model, the Conceptual Design lifecycle phase that is illustrated (figure 9) is driven by a statement of the user/stakeholder/customer need.

![Diagram of Conceptual Design phase](image)

Figure 9: Conceptual Design phase [7]

The input that drives this conceptual design phase, the user/customer/stakeholder need, has been expressed more generally as part of the process input for the systems engineering process [8]. This process input includes:

- The user/customer/other stakeholder needs/desires/goals/requirements. These can be decomposed into:
 - Uses/missions;
 - Measures of Effectiveness;
 - Environments;
 - Constraints;
 - Prior outputs;
 - Requirements from tailored specifications and standards;
- Requirements from contracts/other agreements.
- The available technology base.

[2] describes a set of hybrid methodology phases. Table 3 shows the equivalence of the two models of system lifecycle. The absence of trade-off studies and synthesis in this table reflects the hybrid methodology’s focus on very high-level, abstract functional descriptions (see [1]).

Table 3: Mapping of Hybrid Phases to SE Process Activities

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy:</td>
<td>Process I/P (Need): Stakeholder needs, desires, goals, missions, constraints, technology base, etc.</td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Context</td>
<td></td>
</tr>
<tr>
<td>Feasibility:</td>
<td>Process I/P (Need): Stakeholder needs, desires, goals, missions, constraints, technology base, etc.</td>
</tr>
<tr>
<td>Economic</td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td></td>
</tr>
<tr>
<td>Analysis:</td>
<td>Requirements analysis: Analyse uses and environments, capture, validate and refine requirements.</td>
</tr>
<tr>
<td>User requirements</td>
<td></td>
</tr>
<tr>
<td>Logical Design:</td>
<td>Functional analysis: Functional decomposition, functional architecture.</td>
</tr>
<tr>
<td>Functional</td>
<td></td>
</tr>
<tr>
<td>What?</td>
<td></td>
</tr>
<tr>
<td>Evaluation:</td>
<td>Evaluation: Characteristics of given architectures versus initial requirements. Does the functional architecture fulfil the need?</td>
</tr>
<tr>
<td>Implemented system</td>
<td></td>
</tr>
<tr>
<td>Original objectives</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10 replaces the hybrid phases with the equivalent phases described by [7].
Mapping SE Lifecycle and Process Stages to the UML

On the basis of a number of sources in the literature, for example [9], it is possible to map UML products to generic system lifecycle phases and therefore to the [2] hybrid lifecycle phases. These sources make it possible to link UML and the Blanchard and Fabrycky notion of a conceptual model.

[9] describes a system development process, GRAPPLE (Guidelines for Rapid Application Engineering), that is based on the precursors to the Rational Unified Process (RUP). GRAPPLE utilises five ‘segments’ that cut across the activities of [7]’s system lifecycle. In effect, the GRAPPLE segments (Requirements Gathering, Analysis, Design, Development and Deployment) represent a condensed system lifecycle. In GRAPPLE, a single lifecycle phase incorporates the activities that, in [7], take place at increasing levels of detail, across five lifecycle phases. Hence the emphasis, in GRAPPLE, is on rapid development (stemming from the pressures of software development). [10]’s process provides a link between the lifecycle activities described in [7] and the UML. Figure 10 is based on the mapping of segments to UML diagrams described in [9]. Reference [9] defines the segments as follows:

- **Requirement Gathering** – The user need. The business processes that are the subject of system design. User domain analysis. Cooperating systems. System requirements – what do users want the system to do?
- **Analysis** – Deeper analysis of the requirements gathering phase data. System usage. Interactions in the system.
- **Design** – Design of the solution system based on analysis results. Iterative with analysis segment.
- **Development** – Build solution system.
- **Deployment** – Fielding of the solution system.
The latter two stages, Development and Deployment, do not generate UML products and are outside of the scope of hybrid methodology.

- Use Case,
- Sequence,
- Collaboration,
- Class,
- State

- Package,
- Class,
- Deployment,
- Activity,
- Use Cases

- Object,
- Activity,
- Component,
- Deployment

Figure 11: GRAPPL3 Segments and Equivalent UML Diagrams (from [9])

The applicability of object-oriented approaches to the systems engineering process is supported through a selection of methods including the Rational Unified Process for Systems Engineering (RUP SE), [10], Object Oriented Systems Engineering Method (OOSEM), [11], and [12]’s paper describing the unification of the UML with Systems Engineering. Table 4 illustrates the mapping of UML to SE process activities.

<table>
<thead>
<tr>
<th>Equivalent SE Process Activities</th>
<th>Applicable UML Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process I/P (Need)</td>
<td>Activity Diagram (what is the business process that is targeted?), Class Diagram (domain analysis – classes, objects, attributes?), Deployment Diagram (interacting sibling systems). Package Diagram (what the users want the system to do – top-level system functions – packages are collections of use cases). Use Case (requirements)</td>
</tr>
<tr>
<td>Requirements Analysis</td>
<td>Use Case Diagrams (details of high-level functions from packages, actors and dependencies for each use case from packages, text description of steps in each use case), Refined Class Diagram (details of associations, classes, multiplicities etc.), State Diagrams (changes of state), Sequence/Collaboration Diagrams (How objects interact including state changes).</td>
</tr>
<tr>
<td>Functional Analysis</td>
<td>Object diagrams, Activity diagrams, Component diagrams, Deployment diagrams.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Not needed here</td>
</tr>
</tbody>
</table>
Hybrid Phases to UML Mapping

Tables 3 and 4 thus establish that each of the phases of the hybrid methodology can be mapped to the UML. In particular, the first two hybrid phases, **Strategy** and **Feasibility**, can now be shown to map to UML diagrams.

Table 5: Mapping of Hybrid Methodology Phases to UML

<table>
<thead>
<tr>
<th>Hybrid Methodology Phase [2]</th>
<th>Applicable UML Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy:</td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>Activity Diagram (what is the business process that is targeted?), Class Diagram (domain analysis – classes, objects, attributes?),</td>
</tr>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Context</td>
<td></td>
</tr>
<tr>
<td>Feasibility:</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td>Deployment Diagram (interacting sibling systems), Package Diagram (what the users want the system to do – top-level system functions – packages are collections of use cases), Use Case Diagram (requirements),</td>
</tr>
<tr>
<td>Social</td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td></td>
</tr>
<tr>
<td>Analysis:</td>
<td></td>
</tr>
<tr>
<td>User requirements</td>
<td>Use Case Diagrams (details of high-level functions from packages, actors and dependencies for each use case from packages, text description of steps in each use case), Refined Class Diagram (details of associations, classes, multiplicities etc.), State Diagrams (changes of state), Sequence/Collaboration Diagrams (How objects interact including state changes),</td>
</tr>
<tr>
<td>Logical Design:</td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td>Object diagrams, Activity diagrams, Component diagrams, Deployment diagrams,</td>
</tr>
<tr>
<td>What?</td>
<td></td>
</tr>
<tr>
<td>Evaluation:</td>
<td></td>
</tr>
<tr>
<td>Implemented system</td>
<td>Utilises the evolved UML model,</td>
</tr>
<tr>
<td>Original objectives</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 establishes the traceable linking of hybrid methodology phases to UML diagrams for all phases of the hybrid. This key step makes it possible to use the component methodologies to generate an evolving common UML Architecture Model that is directly mapped to DoDAF products.

IMPLEMENTING THE HYBRID METHODOLOGY

Unlike the latter hybrid methodology phases (**Analysis** through to **Evaluation**), where the chosen component methodology (RUP) is directly compatible with the UML, the component methodologies chosen for the **Strategy** and **Feasibility** phases do not directly produce an output compatible with the UML. [13] Discusses methods for transitioning the output of SSM to OOA (UML). Tables 2 and 3 establish that these phases are compatible with the UML, and it is the task of the chosen component methodology to present its output in the required UML form. By establishing the link between phase and UML, it is possible to prescribe the required UML output for each phase, and to populate the relevant UML diagram on the basis of the component methodology output.
HYBRID COMPONENTS

Having settled on the choice of the appropriate hybrid, it is then necessary to examine the components of that hybrid in greater detail. This is a precursor to plugging them together. We need to know about each component in more detail in order to be able to examine the interfaces that will need to be created between, for example, SSM and SSADM. This will also be done with particular reference to the three lifecycle phases that paper [1] identified as critical to the C2 architecting domain (strategy, feasibility and evaluation).

Soft Systems Methodology

The SSM (Soft Systems Methodology) developed in the UK in 1972 by Checkland [14] resulted from an inadequacy of hard systems thinking to deal with the complexity and behaviours of socio-technical systems which are predominantly human centric in nature. SSM is a dynamic process of exploratory inquiry, learning and purposeful action to improve the problem situation. Checkland’s methodology prescribes a process of seven steps shown in figure 13.

The SSM approach considers both the logical and the cultural aspects of the socio-technical system and brings in human perception, ownership and power issues through the concepts of CATWOE (Customers, Actors, Transformation process, Weltanschauung ‘world view’, Owners(s), Environmental constraints) and the development of Root definitions and conceptual models of the system or Holons.

The cultural aspects of the system are examined though a sequence of Intervention, Social System and Political System analyses.

According to [14] the advantages of using SSM to conduct information requirements analysis include:
- “An explicit, organised and defensible way of reconciling different and/or conflicting perspectives;
The means to build a model of business processes appropriate to the users within the area of concern”.

This paper has recommended using SSM products “as an initial analysis for systems development projects using structured methods such as SSADM (Structured Systems Analysis and Design Methodology)”.

Checkland’s SSM that produces models representing logically derived sets of linked dependant activities in terms of “what” the system must do rather than “how” it might do it, was chosen and Information Systems Methodology (ISM) was used to develop the activity model. (An overview of this information-oriented version of SSM, which is particularly applicable for information requirements analysis and information audit, is shown in Figure 13.) ISM starts by using “Rich Pictures” to express what were considered important points about the situation to be modelled within a free-form cartoon style diagram. Then a Root Definition is derived for each system to be modelled and elaborated against Customer, Actors, Transformation, Weltanschauung, Owner and Environment (CATWOE). Based on these Root Definitions, a conceptual model is built. This model can be further decomposed to higher resolution models in a hierarchy, where root definitions for activities in lower level models are derived in the similar manner.

These models are then validated and amended. The activities in the lowest level models are evaluated to identify those activities that can be expected to have the greatest business benefit from IS support to prioritise development work. The evaluation is based on three criteria:

- Contribution to Operational/Military Capability (mission effectiveness, essential needs, responsiveness and command and control);
- Frequency of occurrence;
- Information content.
The perceived strength of SSM is in relation to the strategy phase of the proposed hybrid methodology for C2 architecting.

The Rational Unified Process

In order to move from the conceptual world back to reality, analyses need to be carried out to gain insight and address the problematic situation. The analysis process involves mapping both current and planned systems and information categories (information required for the activity to take place, information produced as an output of the activity and information required as a measure of performance of the activity) to the activities to be performed. A gap and overlap analysis follows. The technique used to associate information categories with activities is the “Use Case” technique from the Object Oriented Design method. The nouns identified in the Use Case description are the required information categories.

It is the strength of RUP in relation to the evaluation of system options that will augment the hybrid C2 methodology.

Structured Systems Analysis and Design Methodology

SSADM was developed by UK consultants Learmonth and Burchett management Systems (LBMS) and the Central Computing and Telecommunications Agency (CCTA) under the auspices of the UK Civil Service. In use since 1981, it emphasises data modelling. SSADM provides strong guidance for its implementation and features comprehensive documentation.

SSADM mandates five modules and a total of seven stages, and has been designed to work closely with the PRINCE project management method. The five modules of SSADM are:

1. Feasibility study.
2. Requirement analysis.
3. Requirements specification.
4. Logical system specification.
5. Physical design.

In the context of the soft hybrid methodology proposed in this paper, the particular strength of SSADM is the first module, feasibility.

SUMMARY

This paper has sought to redress the deficiency of a lack of a systematic comparison and evaluation of approaches for architecting C2 systems by firstly describing a framework for the rational, reasoned and traceable selection of a hybrid development methodology and, then addressing the problem of integrating the candidate methodologies into a single, unified hybrid methodology that will meet the specific needs of the C2 capability development context. The specific hybrid methodology developed in this paper could be described as a soft mantle with a hard systems core. Differing from other soft systems/object-oriented approaches, this paper establishes a mapping from component methodologies of the hybrid to DoDAF products via a common UML modelling medium. The present paper has maintained a focus on defining the hybrid C2 methodology to a point where it can be used for a practical development purpose. The report has established a mapping from component methodologies of the hybrid to DoDAF products via a common UML model.

Other soft systems/object-oriented approaches [13] have focused on how methodologies such as SSM can generate appropriate object-oriented products. This paper changes that focus to...
one of creating a common modelling medium for all methodologies, and assumes that the
question of expressing the output of any given methodology in UML form is comparatively
simple.

REFERENCES

2003.

dition.

2004.

Saddle River, NJ, Prentice Hall.

[8] Halligan, R. Systems Engineering for Defence, Aerospace and Other Technology-
Based Sectors, Course notes 1998.

USA.

Rational Software White Paper.

International Symposium*. Minneapolis, USA.

International Symposium*. Las Vegas, USA.

Methodology (SSM) Models to Object Oriented Analysis (OOA), Developed to
Support the Army Operational Architecture (AOA) and an Example of its Application,
*Proceedings of the 1999 Command and Control Research and Technology
Symposium*, United States Naval War College, Newport, RI, USA, June 29-July 1,
1999.

AUTHOR BIOGRAPHIES

Associate Professor David Cropley is the Director of the Systems Engineering and Evaluation Centre at the University of South Australia. Among his research interests are knowledge management, command and control, and creativity in engineering.

Dr Yi Yue is a senior research scientist of Land Operations Division, DSTO. Her research interests include command and control architecture, systems methodologies, and land tactical information management.

Professor Stephen Cook is the DSTO Professor of Systems Engineering and Chief Executive of the Center of Excellence in Defence and Industry Systems Capability. His research interests include improving the capability of Australian industry to provide complex system solutions, systems approaches for defence capability development, acquisition improvement, and the derivation of a theoretical framework to support the coherent teaching of systems engineering.