On Coherence Intervals and the Control Paradox

Jens-Olof Lindh
jens-olof.lindh@kockums.se

Intl. Command and Control Research Technology Symposium 2006
September 26-28, 2006
Cambridge, UK
Introduction

- Distributed systems
 - Nodes are related so with respect to each other, that communication takes a significant amount of time
 - Nodes take inputs from their local environments

- Cognitive capabilities
 - Assume internal, "sensemaking" processess at the nodes

- Temporal models
 - Absolute time. Normalized time.
 - Duration of events. Interval between events
Background – Simulation-based demonstrators

Proofs of concept!

Confidence?
Background – Peer-based group-think

Group 1

Group n
Background – The Distributed Blue Force Tracker (DBFT)

Field tests with real nodes in army training organisation
Background – DBFT schematic view

Radio package (VHF/UHF) Standard PC (WinXP)

Antenna for VHF radio
Background – DBFT schematic view 2

Communication

Computation
Background – DBFT schematic view 3

Node
All nodes take input from their respective environments
All nodes send messages to all other nodes
All nodes are (more or less) out of pace!
Application problem

- Demonstrators with simulated nodes sometimes show unexpected behaviours
- Demonstrators with real nodes sometimes become irresponsive (and we are comparatively tolerant for the unexpected)
- Unexpected behaviours indicates loss of control (which is bad)
- Irresponsive systems indicates loss of control (which still is bad)
- Observation: Timing adjustments seem to be part of all fixes
- Also, irresponsiveness make data irrelevant – too old to be useful

=> Let’s investigate under what circumstances nodes in real, distributed systems actually has access to the same – coherent – set of data
Coherence

Assumption: Coherent data is a prerequisite for "shared awareness"

A group has a coherent set of data, when all nodes/members assign the same value to a shared attribute

So, first there has to be a group which has a set of common attributes, and the intention of maintaining a common set of corresponding values

Coherence is lost (False) whenever one such value is changed at any of the nodes in the group, unrecognised by the others

Coherence is regained when that change has been communicated to all other nodes, so the respective corresponding attribute is updated
Nodes – Communication model

State change at node 1

Node 1 → Radio 1 → Radio n → Node n

State change at node n

Broadcast

| Message composition | Coding | Data transfer | De-coding | Message decomposition |

Bandwidth dependent

Coherence is False
Measurement problem

We want to investigate data coherence:

- Every node takes sensory data and messages as input
- Every node sends messages with some interval
- Every message takes some time to come through

Practical problem:

- When we want to measure the messages
- and every measurement is a message
- the measurements affects the measured.

1. Make use of local databases
2. Do some post operations number-crunching
3. Try to make sense of the results
Experiments

- General setting
 - Three nodes with minimal computational load
 - Computers, VHF radio 9600 baud, 100 byte messages
 - Nominal message transfer time about 0.083 s
 - Temporal corrections and coherence fractions are calculated after completed experimental runs

- Experiment 1
 - All three nodes send message at interval 5 seconds
 - Actual message time about 0.20 – 0.25 s
 - Spontaneous decrease of coherence due to race conditions

- Experiment 2
 - One node decrease interval between messages from 5 to nominal 0 seconds and then increase interval again.
Experiment 2 – Message delivery time; sending node perspective
Experiment 2 – Message age at arrival; receiving nodes perspective
Interpretation – data latency and coherence

Latency of messages received [s]

- Highest accepted latency
- Lowest possible latency

Saturation

Coherence = 0

Longest accepted interval between messages
The coherence interval

- **Incoherent**
- **Coherence interval**
- **Irrelevant**

- **Saturation**
- **Coherence = 0**
- **Longest accepted interval between messages**

Message interval
The control paradox

Shortening the interval between messages sent may in fact increase the age of messages arrived.

Increasing demands above some threshold actually makes data too old.
Coherence intervals revisited – operational dynamics

- Loss of capability
- Increase #nodes

Organisational levels

Increased operational tempo

Interaction interval [s]
Organisational decoupling

Higher level messages may be irrelevant at arrival

Need data this often

Receive data this often
Relative simultaneity

- Data transfer is subject for latency and saturation phenomena
 - When receiving data, we do not know how old it is
 (If we try to send "too much", data can become very old)
- So all data received is old (as also defined by "distributed systems")
- And even though data arrives "now", its actual age may vary
- These phenomena appear to be the same as described in the theory of special relativity, however then applied to light

\[W_i(t) \]

\[Q \quad Q' \quad P \quad P' \]

Einstein-ish
Conclusions

- Limitations to data coherence and data distribution in groups can be investigated with the time based models and methods described here.

- A strong notion of simultaneously shared data does not hold – What latency do we have; how old data can we accept?

- Uncertainty phenomena put a lower limit to the resolution of measurements and observations in running, on line systems – And, asking for more information may take down a network.

- Recognition of the coherence interval, the uncertainty phenomena and the relativistic simultaneity that manifest in distributed systems may provide further understanding of e.g., indeterministic behaviours and complexity.

- It may also shed some light to mechanisms of command structure breakdowns, or predictions of e.g., the largest controllable group, given technical, temporal and environmental constraints.
On Coherence Intervals and the Control Paradox

Jens-Olof Lindh, PhD
jens-olof.lindh@kockums.se

Intl. Command and Control Research Technology Symposium 2006
September 26-28, 2006
Cambridge, UK

Kockums AB
Blekinge institute of technology (BTH)
 - Prof. Rune Gustavsson

Radius AB
Nodes – Environment model

(U Universal) Environment

Accessible environment

Sensory input

Data set shared with other nodes

Physically

Semantically

To other nodes

From other nodes
Inherent phenomena – uncertainty

- A coherent data set implies a definition of the state of the system
- Each unit maintains some behaviour, based on its current state
- The same resource is used for both handling messages (updating states) and creating behaviours

A group of units that are distributed in a changing environment can not at the same time both maintain a coherent state description of the group and provide an ”ideal” behaviour.

The larger the variation of the environment that is to be described, the larger the minimal size of a message need to be. Therefore, the lowest interaction interval will increase with the generality of the domain description. Specialized systems will react faster than general systems.
The info-time cone

\[\sigma(D_j) \]

nodes \rightarrow data \rightarrow info-cone \rightarrow now \rightarrow time

N_i \quad Q \quad P