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Cross-Domain Ontology Resolution 
In Net-Centric Command and Control 

Abstract 
Experts have argued that the success of Net-Centric Operations and Warfare (NCOW) 
depends upon the ability of net-centric environment (NCE) users—both human and auto-
mated—to readily discover useful information and Web-based services. Effective discov-
ery requires, in turn, effective meta-data “tagging.” It was argued that no single, over-
arching classification scheme is adequate to provide the semantic support required for the 
successful deployment of such core enterprise services as discovery, collaboration, me-
diation, and storage. What was needed was a way to support multiple taxonomies with 
automatic taxonomy evolution using machine learning and intelligent agent technology. 
This paper analyzes the underlying reasons for this claim and shows that what is really 
needed is a way to allow multiple ontologies (along with their taxonomic correlates) with 
cross-domain (i.e., inter-ontology) resolution (translation) to coexist in a net-centric envi-
ronment. After surveying some apparent theoretical limits to ontology commensurability, 
it describes a conceptual framework that is sufficient to enable information and Web-
services interoperability for command and control in an NCE. It compares this frame-
work to current semantic web approaches to show what the framework contributes. 

1. Introduction 
It should be apparent that the success of Net-Centric Operations and Warfare (NCOW) 
depends upon the ability of net-centric environment (NCE) users—both human and 
automated—to readily discover and then use relevant information and Web-based ser-
vices. Minimally, discovery requires the effective “tagging” of the information and Web 
services that are being offered for sharing. Tagging is just another name for cataloging or 
classifying information or Web services to allow them to be found more easily. An earlier 
paper [1] argued that no single, overarching classification scheme was likely to be fully 
adequate for the effective discovery of core enterprise services or information. What was 
needed, it suggested, was a way to support multiple classification schemes, ideally with 
the suitability of each classification scheme to be evolved automatically by intelligent 
software agents. This paper recaps the underlying reasons for the need for multiple classi-
fication schemes—multi-faceted classification—and then argues that what is really 
needed is a way to allow multiple ontologies (along with their taxonomic correlates) with 
cross-domain (i.e., inter-ontology) resolution (translation) to coexist in a net-centric envi-
ronment. After surveying some apparent theoretical limits to ontologic commensurability, 
this paper describe a conceptual framework that is sufficient to enable information and 
Web-services interoperability for command and control in an NCE. It compares this 
framework to current semantic web approaches to show what the framework contributes. 

2. The Problem 
Why is multi-faceted classification needed? The simplest and most compelling reason is 
that the Department of Defense (DoD) will never be able to enforce the use throughout 
the enterprise of an information and services “tagging” standard (i.e., a single classifica-
tion scheme)—even if a reasonably good standard could be devised. The argument is 
straightforward. The military Services, the Office of the Secretary of Defense, the sup-
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porting and unified combatant commands—i.e., the components of the DoD enterprise—
all have different responsibilities and different ways (functions) of meeting those respon-
sibilities. Even when a function is common among the different uniformed Services, the 
particular way in which the function is performed usually differs between DoD compo-
nents. And there are simply cultural differences that will never be fully resolved. (For 
reasons which are sketched below, it is not obvious that a single classification scheme 
sufficient to encompass all of the multifarious kinds of information and information ser-
vices regularly used throughout DoD is even possible. The necessary conceptual tools are 
just not available.)  
First some theoretical background. What exactly is the problem this paper is trying to 
solve? President Lincoln used to ask, “If you call a tail a leg, how many legs does a dog 
have? Four! Calling a tail a leg doesn’t make it a leg.” But a dog’s leg can be called a 
“leg.” It might also be called a “canine locomotive appendage”—or simply a CLA, in 
DoD acronymese. If the Air Force calls a dog’s leg a “leg,” and the Army calls it a 
“CLA,” and each Service says they have so many legs and CLAs stockpiled, how can one 
assess the Army’s capabilities vis-à-vis those of the Air Force without knowing that the 
two concepts are really equivalent? Simply put, how can one determine (without asking 
or consulting a Service-specific lexicon) that the Air Force’s “leg” and the Army’s 
“CLA” refer to the same thing? More generally, how can one determine the semantic 
equivalence of two syntactically distinct concepts?1

Conversely, how can one determine the semantic non-equivalence of two syntactically 
equivalent concepts (e.g., “tank” (qua container) and “tank” (qua armored attack vehi-
cle))?2 In terms of net-centric command and control, how are authorized users of the 
Global Information Grid (GIG) to “discover” the number of tanks (armored vehicles) al-
located to the 1st Infantry Division and on-hand and fully operational at a certain time? 
Finally, what should be done with a concept that has no analogue? The US Army has 
three concepts of gender: male, female, and unknown. The Marine Corps has four: male, 
female, other, and unknown. “Gender” is clearly a concept that exists in both the Army 
and the Marine Corps. But how should the Army model the gender of an individual that 
the Marine Corps designates as “other”? 
How will the Global Directory Service (GDS)3 enable a GIG user, with the proper secu-
rity credentials and “need to know,” to find such information? Is the “meta-data” pre-
scribed to be specified and published in a meta-data registry or catalog per the DoD Net-

                                                 
1 The two names of the concepts in our example (“leg” and “CLA”) differ syntactically (i.e., ortho-

graphically). By hypothesis, they are equivalent semantically (i.e., they refer to the same thing and, 
when properly understood, have roughly the same connotation).  

2  This is not a vacuous intellectual exercise. A few years ago the US Air Force, Navy, and Marines each 
had different definitions—with significant implications in terms of readiness reporting—for “available 
full-up round” of the AIM-9 missile. The definitional differences turned on the Services’ assignment of 
different values to “time to assemble, time to bench-check as serviceable, and time to make ready for 
immediate load-out.” 

3  The GDS is one of the Defense Information Systems Agency’s (DISA) Net-Centric Enterprise Ser-
vices (Core Services). It purportedly “[p]rovides an enterprise-wide service for [the] identification [of] 
and other pertinent information about people, objects and resources, and makes it accessible from any 
place at any time (http://www.disa.mil/main/prodsol/1_enterprise.html).” 
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Centric Data Strategy4 really sufficient to locate needed information (or relevant services, 
as the case may be)? 
As argued in [1], a Google™-like search is often ineffective, especially if the search is to 
be automated. A recent Google™ search for “tank” returned 122,000,000 results. Search-
ing for “tank” and “military,” Google™ returns about 8,420,000 results. To make 
Google™ and similar Internet search engines more useful, humans intuitively refine the 
search process by including terms that confine the search to the appropriate domain. The 
online version of WordNet®—which, by the way, gives five definitions for the noun 
form of “tank”5—has military as one of five domain categories applicable to “tank” 
when defined as “an enclosed armored military vehicle; has a cannon and moves on cat-
erpillar treads.” A domain category in WordNet® is a topical classification. In other 
words, WordNet® makes explicit the mechanism humans rely upon intuitively in disam-
biguating terms and fixing their meaning. Ultimately, it’s the linguistic context in which a 
term is used that determines its meaning, or, as Wittgenstein famously put it, “the mean-
ing of a word is its use in the language.”6 The meaning of a term emerges from and is 
dependent upon the way it is used in the language and by a community of language users. 
This reference to and need for language user communities is reflected in DoD’s Commu-
nities of Interest (COI) approach to implementing its net-centric data strategy.7 Indeed, 
one role of a DoD COI is to “define COI-specific vocabularies and taxonomies,” vocabu-
laries “to improve data exchange within COI and among COIs” and taxonomies “to im-
prove precision discovery.” Both the theoretical and practical problems inherent in this 
latter are the focus of this paper. 

3. Theoretical Issues in Information Discovery 
First, a few (stipulative) definitions. The terms “ontologies,” “taxonomies,” “vocabular-
ies,” “meta-data,” et cetera have become the DoD buzz-words du jour. They are not al-
ways used consistently or coherently. In philosophy, ontology is the study of being, per 
se.8 In computer and information science (and in the DoD), an ontology is an account of 
the things (objects, entities) of interest (in a domain of interest). The account specifies the 
things (that exist or comprise the domain), as well as their attributes (properties) and the 

                                                 
4  http://www.dod.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
5  http://wordnet.princeton.edu/perl/webwn
6 Wittgenstein, Ludwig, Philosophical Investigations, §43. (This view is not—as with any philosophical 

issue—without considerable controversy. It nicely sloganizes the view that for any formal data model-
ing effort to be useful for automatic knowledge discovery, contextual features—entity attributes, their 
domains, and importantly their interrelationships—must be well formed and easily “navigated.”) 

7 See, for example, Todd, Michael, “Implementing the Net Centric Data Strategy using Communities of 
Interest,” October 20, 2005, 
http://colab.cim3.net/file/work/caf/resources/10_20_05/DRM_COI_Net_CentricDataStrategy_Todd_2
005_10_20.ppt#612,1,Transforming the Way the DoD Manages Data    Implementing the Net Centric 
Data Strategy using Communities of Interest, for one of many discussions of the critical role that COIs 
are intended to play in the net-centricity information environment. 

8 An excellent discussion of the differences (and similarities) between philosophical ontology and com-
puter science ontology can be found in Smith, Barry, “Ontology and Information Systems,” 
http://ontology.buffalo.edu/ontology(PIC).pdf.  
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relations9 that obtain between the things of the domain. It’s typical to think of ontologies 
as consisting of both individual existing things (individuals or instances) and the concepts 
that characterize them. Person is a concept; Dave Alberts is an individual person, an in-
stance of the concept person, as it were. A taxonomy is that which you get by selecting 
all of the concepts of an ontology that are related by (something like) a “is-a-(kind of)” 
relation and then documenting the results in a way that preserves the “is-a” relation of the 
ontology. A taxonomy is just a handy “is-a”-based classification. A good taxonomy will 
also be one in which all of the X’s that “are-a-kind-of” Y are mutually exclusive (the sub-
domain X’s do not overlap) and collectively exhaustive (there aren’t any Z’s to be found 
(that “are-a-kind-of” Y) that aren’t among the X’s). Ideally, every information system on-
tology will exhibit a good taxonomy. A vocabulary is an account of both the language 
used to give an account of an ontology and its imbedded taxonomy (for example, the 
terms “concept,” “entity,” “attribute,” “relation”) as well as of the ontology itself (that is, 
of the things that actually comprise the domain of interest). In a genuine sense, a vocabu-
lary is meta-data.10 It describes what language (data) is used within a domain of interest 
by mentioning that language. It’s basically a more human-accessible form of what we 
now call an ontology, with or without a taxonomy. The central issue of this paper is how 
to effect ontology resolution when searching for information (or services) outside of 
one’s COI. By “ontology resolution” we mean the (partial) alignment of two distinct on-
tologies in order to facilitate information (or services) discovery within a COI other than 
one’s own. Each ontology provides the context necessary to verify the presence or ab-
sence of the sought for information. One can infer safely by analogy that if “tank” is-a 
“armored combat vehicle” within one’s own COI, say COIA, and a-kind-of “military 
weapon” in another’s COI (COIB), then the two concepts are likely to be the same; how-
ever, if “tank” appears as a-kind-of “freight car” in still another COI (COIC), then the two 
concepts are most likely distinct. This simple example is illustrated in Figure 1. 
Figure 1 depicts a fragment of three COI ontologies. The concept “tank” is syntactically 
equivalent in all three. But on the assumption that the two relations “is-a” and “a-kind-of” 
are semantically equivalent (or nearly so) and that the concept “armored combat vehicle” 
is qualitatively closer (in the ontological space that subsumes all three ontologies) to 
“military vehicle” than it is to “freight car,” the tanks of COIs A and B are “equivalent” 
but the tanks of COIs A and C (and of B and C) are “distinct.” It is just this kind of rea-
soning that has to become automated if a net-centric GIG is to fully live up to our expec-
tations. 
While this paper has been framing the discussion in terms of information (and informa-
tion services) discovery, the information exchange issue faces the same problem. For ex-

                                                 
9 A (dyadic) relation (e.g., “X is the daughter of Y”) can be also viewed as an attribute (“is the daughter 

of Y”) of X, reducing the definitional machinery to just things and their attributes. 
10 “Data about data” is the customary formula. “Meta” is Greek for “after.” (Metaphysics came by its 

name because the “book” in which Aristotle wrote of things metaphysical (and ontological) was physi-
cally placed after his “book” on physics in a collected edition.) In logic (or in any formal discipline) 
it’s always important to bear in mind the distinction between the object language (the language being 
reasoned about) and the meta-language, the language in which the reasoning (about the object lan-
guage) is carried out. The Knight in Lewis Carroll’s Alice Through the Looking Glass, used Alice’s ig-
norance of this “use-mention” distinction to thoroughly befuddle poor Alice. Remember too that meta-
data is also data and can be talked about using meta-meta-data (meta-(meta-data)), ad infinitum. 
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Figure 1. Discovery via Ontology Resolution 

ample, the Joint Command, Control, and Consultative Information Exchange Data Model 
(JC3IEDM) [7] is a key element of the Multilateral Interoperability Programme (MIP), a 
26 nation effort under the aegis of North Atlantic Treaty Organization (NATO), with the 
objective of achieving international interoperability of command and control information 
systems.11 The JC3IEDM is “intended to represent the core of the data identified for ex-
change across multiple functional areas…. [I]t lays down a common approach to describ-
ing the information to be exchanged in a command and control (C2) environment.” 
DoD’s Universal Joint Task List (UJTL) [8] is a warfighting mission area-focused “menu 
of tasks in a command language, which serve[s] as the foundation for capabilities-based 
planning across the range of military operations.”12

As an example of the reasoning pattern, the term “terrain” is examined for the challenges 
involved. Both the JC3IEDM and the UJTL have a concept of terrain as illustrated in 
Figure 2. Between the seven types of terrain in the UJTL and the five specific types 
available in the JC3IEDM, only one (“mountainous”) is common (on a syntactic basis). 
(The definitions provided in the JC3IEDM documentation add little but obvious syn-
onymity by way of explication. “Flat,” for example, is defined as “terrain…characterized 
as broadly level.”) Are the two concepts—UJTL terrain and JC3IEDM terrain—
equivalent, even roughly? How would one decide? How can one represent terrain infor-
mation, generated on the basis of the UJTL ontology, for exchange via the JC3IEDM to a 
coalition partner? And could this ever be done automatically? Actually, the situation is a 
                                                 
11 See http://www.mip-site.org/010_Public_Home_News.htm.  
12 CJCSM 3500.04D, August 2005, directive current as of 17 August 2006, 

http://www.dtic.mil/cjcs_directives/cdata/unlimit/m350004.pdf.  
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little more complicated. The UJTL provides additional and rather robust ways to charac-
terize terrain, and terrain is only one of four major facets used to classify land. (The other 
three are geological features; man-made terrain features, including urbanization; and 
landlocked waters.) The UJTL descriptors for terrain listed in Figure 2 are only “general 
characteristics of land areas.” Additional features include terrain relief, terrain elevation, 
terrain slope, terrain firmness, terrain traction, vegetation, and terrain relief features. 
These features (attributes), along with their allowable values, need to be compared with 
the analogous geographic features (and accompanying codes) in the JC3IEDM. In addi-
tion to the already mentioned geographic-feature-terrain-code, the JC3IEDM can repre-
sent a geographic feature in term of bottom-hardness, solid-surface-composition, status-
category (liquid-body, liquid-surface, solid-surface), status-surface-recirculation-
indicator (will or will not recirculate as a result of rotor downwash), surface-category, 
type-category, and type-subcategory. These attributes are defined generically as “terrain 
characteristics to which military significance is attached.” 

JC3IEDM
OBJECT-TYPE

FACILITY
MATERIEL
ORGANISATION
PERSON
FEATURE

CONTROL-FEATURE-TYPE
GEOGRAPHIC-FEATURE-TYPE

Flat
Hilly
Mountainous
Undulating
Urban
Not known
Not otherwise specified

geographic-feature-terrain-code

UJTL
Conditions for Joint Tasks

Physical Environment

Military Environment

Civil Environment

Land

Sea

Air

Space

Terrain

Mountainous

Peidmont

Steppe (pampas, plains, savanna,
veldt)

Desert

Delta (river systems, lakes regions)

Arctic

Jungle

x

y
= “y is a (kind of) x”

 

Figure 2. Terrain in the UJTL and JC3IEDM Ontologies 

With this brief survey of some of the fundamental issues in terms of ontology resolution 
that underlie—and threaten to undermine—effective discovery and information exchange 
in a net-centric environment, it is time to look at possible solutions. 

4. Ontology Resolution: One Approach 
One such possible solution to what we are calling ontology resolution is a tool developed 
by John Li of Teknowledge Corporation. His Lexicon-based Ontology Mapping tool—
LOM for short—matches terms between source and target ontologies and assigns an 
alignment confidence rating, a number between 0 and 1, to each putative match [3]. Li’s 
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work uses the Suggested Upper Merged Ontology (SUMO) [4] and its descendant, Mid-
Level Ontology (MILO) [5], as its context bases. It also uses WordNet® [6] for synonym 
discovery and comparison. Using these resources LOM has achieved precision and recall 
rates of 71% and 57%, respectively.13 This kind of performance makes it well suited to 
what Li calls “first-cut” comparisons, part of a scenario in which LOM identifies likely 
matches for subsequent human verification.  
LOM demonstrates the feasibility of automatically resolving term equivalence across on-
tologies. But with only a 71% precision rate, this technology is not (yet) practical for 
daily application in an environment as large as the NCE. A human must filter out the ir-
relevant 29% of retrieved records, a significant effort. 
In what follows, this paper extends Li’s approach by considering only those ontologies 
that are related to command and control. It does so by discarding SUMO and MILO as 
context, using instead the ontology that informs the JC3IEDM. A domain-specific ontol-
ogy seems likely to yield better performance in ontology resolution than the general-
purpose ontologies of SUMO and MILO, at least with respect to the domain of primary 
interest, C2. 
The remainder of this paper is organized as follows. Section 5 presents an overview of 
Li’s approach. Section 6 presents this paper’s extensions to Li’s work. Section 7 covers 
the framework in which the approach might be used. Section 8 summarizes findings. 

5. An Overview of Li’s Approach 
Li, like most researchers in the area, assumes that information is captured in an ontology. 
He further assumes an ontology is represented in a formal language that gives precise 
meaning to kinds of terms and the relationships between them. As is appropriate to se-
mantic web and NCE research, he uses ontologies formally represented in the Web On-
tology Language (OWL) [2]. This provides, among other things: 

• A hierarchical class model. 
• Properties of and relations between classes. 
• Individuals, each of which is a member of one or more classes. 

LOM takes as input a source ontology and a target ontology, both represented in OWL. 
The tool’s output is a list of the “terms” of the source ontology that “match” terms of the 
target. A “term” is, roughly, the name of a class, a property or relation, or an individual. 
LOM uses a four-step algorithm: 

• Step 1: Match whole terms. In the first step LOM looks for matching names. If 
both ontologies contain a term with the same name, these terms are considered to 
match. The whole-term-matching step is quite literal in its treatment of terms: 
“ObjectItem” and “Object-Item” do not match. (It does, however, ignore case dis-
tinctions. “Object-Item” and “object-item” match.) 

• Step 2: Match word constituents. LOM next divides “compounded” terms into 
their components by considering capitalization, concatenation, and punctuation. 

                                                 
13  Precision is the percentage of retrieved records that are relevant. Recall is the percentage of relevant 

records that are retrieved. For an excellent overview of precision and recall, see 
http://www.hsl.creighton.edu/hsl/Searching/Recall-Precision.html. 
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Thus “ObjectItem” and “Object-Item” are treated as “Object Item” and would 
match. LOM also uses stemming and permutations, and uses a stop list to filter 
out prepositions and similar, usually irrelevant, words. Therefore, “BirthDate” 
and “Date-of-Birth” match. 

• Step 3: Match synonym sets. LOM then uses WordNet® to generate synonym 
sets for each term of each pair of terms of the input ontologies provisionally con-
sidered to be equivalent. LOM then performs a term-by-term comparison of these 
synonym sets. If the sets are equivalent, then the two terms are equivalent. For in-
stance, LOM determines that “capability” and “ability” match, as do “motor vehi-
cle” and “automobile.” 

• Step 4: Match types. In its final step, LOM uses a predefined set of mappings 
from WordNet® words mapped to SUMO/MILO terms. LOM finds 
SUMO/MILO terms for words in the synonym sets identified in step 3, then sees 
if each source ontology term has a counterpart term in the target ontology. 

Each step of the algorithm assigns a confidence-factor score to a pair of matched terms. 
The first step is a binary 0 or 1 score: either two (whole) terms match or they don’t. The 
remaining steps assign a number between 0 and 1 based on the ratio between the number 
of matched words and the average number of words being considered. Furthermore, each 
step uses an empirically derived weighting factor that reflects the decreasing confidence 
in matches for the successive steps. The final score for a matching pair at each step is the 
maximum value of its score from an individual step times the step’s weighting factor. 
The overall result of the algorithm is therefore a sequence of candidate source/target term 
pair matches, ordered by the alignment confidence computed for each pair. An imple-
mentation of the algorithm would also include a minimum confidence value to filter out 
pairs whose alignment is calculated as highly unlikely. 
An ontology developer/maintainer could use these results to add equivalence definitions 
to his ontology. He would first want to verify each match by examining supplied textual 
definitions and term context. This would help him find and eliminate terms with variant 
meanings (e.g., tank, which would satisfy whole-term matching). It would also let him 
ascertain whether lower-scoring results are in fact valid “matches.” 

6. A JC3IEDM-Based Extension to Li’s Approach 
Li’s algorithm described in Section 5 is, by design, a general-purpose approach. As such 
it is an important tool for comparing ontologies from arbitrary domains. However, the 
authors of this paper believe that many ontology comparisons will be between ontologies 
from a common domain. As an example, consider ontologies that model the JC3IEDM 
and the UJTL. Both are predominantly C2-oriented; they share a concern for the same 
domain, namely C2. 
The authors’ goal is to dramatically improve accuracy in ontology resolution, at this point 
between different sub-domains of a single major domain (i.e., C2). This paper therefore 
proposes an extension of Li’s algorithm that incorporates both domain-specific context 
and technology-specific properties. The domain-specific approach improves on the use of 
SUMO and MILO by providing analysis of C2-related terms. The technology-specific 
properties capitalize on features of OWL. The rest of this section presents the proposed 
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algorithm. The relationship to Li’s algorithm is maintained by using the same step num-
bers where possible, or by showing intermediate steps using alphabetic suffixes. 

• Step 1: Match whole terms. This step is virtually identical to LOM’s first step, 
though as discussed below the ranking approach differs. The algorithm compares 
pairs of names of conceptually similar elements: class names to class names, 
property names to property names, and individual names to individual names. In 
some OWL dialects an individual can also be a class. Such an element is treated 
as a candidate for comparison in two element categories. 

• Step 1a: Match terms in element definitions. An OWL element typically has a 
comment that is intended to convey the element’s meaning in natural language. In 
the authors’ experience these comments typically contain a lot of domain-specific 
jargon and as such could be used in the element comparison process. A confi-
dence factor is only computed if both elements have such a comment. Stop lists 
are also employed to filter out common words such as prepositions, and a stem-
ming algorithm is used to reduce words to their roots (eliminating plural and in-
finitive forms). 

• Step 2: Match word constituents. This step is identical to LOM’s second step. As 
in step 1, it is applied to element names. 

• Step 3: Match synonym sets. This step is similar to LOM’s third step. However, it 
uses the results of step 2 to prioritize synonyms. If WordNet® generates a set of 
synonyms for a given term, it looks for set members that include terms from the 
element’s definition. This increases the confidence that the intended meaning has 
been correctly picked. 

• Step 3a: Perform property comparisons. The source and target ontologies contain 
information about classes/individuals and their properties. This step examines the 
classes and individuals identified as possibly related and examine their properties. 
If matches in some of their properties have been identified, this step uses that in-
formation. For instance, if classes C1 and C2 both have a “has-parent” property, it 
examines the cardinality of the property in each class. Suppose one is functional 
and the other requires exactly two instances (Figure 3). This would indicate that 
the first denotes a strict hierarchy—a taxonomy, perhaps—whereas the other is a 
network, possibly describing a genealogy. This should weaken confidence in the 
possible equivalence of C1 and C2. (It would certainly change confidence in the 
near equivalence of the two “has-parent” properties.) These kinds of tests may be 
applied to other aspects of properties, such as whether the properties are func-
tional, reflexive, symmetric, or transitive. Property equivalence can also be tested 
by simply comparing their respective extensions. 
Of course, the absence of corresponding matching properties does not guarantee 
the non-equivalence of two classes. Two classes with different but not inconsis-
tent properties may be equivalent, with the different properties simply reflecting 
different views or perspectives of the same concept by different COIs. For in-
stance, military services share concepts but describe them using different termi-
nology. 

• Step 3b: Classify the ontologies. A set of likely equivalences between elements of 
the two ontologies has now been populated. This information can be employed by 
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Figure 3. Property Comparisons 

a description logic reasoner to check the classes for consistency [9]. Input to the 
reasoner includes the two ontologies, along with the equivalence statements pos-
ited to be true. The reasoner will report whether these statements lead to any con-
tradictions, that is, classes which can have no members. Each contradiction indi-
cates a mistaken assumption and indicates that an equivalence does not in fact ex-
ist. 
A reasoner can also determine all of the classes of which an individual is a mem-
ber. This property is exploited to test conceptual similarity confidence. Suppose 
we have individuals I1 and I2 in both source and target ontologies. If the reasoner 
identifies I1 as belonging to a class of which I2 cannot be a member, then I1 and I2 
cannot denote the same concept. (That I1 cannot be identified as belonging to any 
class in the target ontology is inconclusive. It only means that not enough infor-
mation is available to fully categorize I1.) 

• Step 4: Map terms to JC3IEDM terms. This step corresponds to LOM’s fourth 
step, but the JC3IEDM ontology is used instead of SUMO and MILO. The step 
attempts to categorize a class as equivalent to a JC3IEDM class. Since all 
JC3IEDM sibling classes are disjoint, two classes can only be equivalent if they 
are subclasses of the same class. Moreover, it can use the term mappings to place 
source and target ontology concepts into the taxonomy of JC3IEDM classes. 
LOM performs this step using a custom-created, predefined set of mappings from 
WordNet® terms to SUMO/MILO terms. The approach in this paper also uses a 
mapping in this step, though it can be created with less effort because much of it 
can be generated automatically. Simply start with high-level JC3IEDM terms 
such as “Facility” and “Action.” Use WordNet® to identify the common syno-
nyms and hypernyms of these terms. Then map the synonyms and hypernyms 
back to the JC3IEDM terms. 

 10 



The overall ranking approach is similar to LOM’s. It assigns a 0 or 1 rating to terms in 
the first step, then assigns a fractional value (between 0 and 1) in steps 1a, 2, 3, and 4. 
However, it allows the results of steps 5 and 6 to override the rankings of steps 1–3. Steps 
3a and 3b have the potential to demonstrate conclusively that two concepts are not 
equivalent. These steps also have the potential to increase confidence in equivalence by 
showing fundamental and formal similarities, so the ranking allows them to increase a 
value computed in previous steps. 

Steps 3a and 3b make the algorithm for computing rankings more convoluted than that 
employed by LOM. However, only after step 3 is the information available to perform 
them.  

7. A Framework for Ontology Resolution 
The algorithm in Section 6 yields a set of rankings. This section discusses how to use 
those rankings. 
LOM’s confidence factor scores were judged to have a 71% precision rate. That rate 
makes LOM a good tool for a human analyst, but the figure is not nearly good enough for 
use in a fully automated mode when matches are accepted without human review, espe-
cially during life-risking military C2 operations. Therefore, the algorithm in this paper 
would be used by a software agent whose task is not to determine equivalences between 
terms but rather, given a source ontology, to discover target ontologies that probably con-
tain conceptually equivalent terms. The agent would search the NCE for ontologies (by 
checking registries). On finding an ontology, it would analyze terms in the ontology and 
generate a report of confidence factor scores. A human analyst would analyze this report 
and decide which terms are in fact matches. The analyst would then modify the source 
ontology to record, for each match, the term in the target ontology to which it is equiva-
lent. 
Barring an unforeseen technological leap, it is unlikely that an automated agent could 
ever be trusted to determine the equivalence of two terms for which no formal relation-
ship already exists. A more probable scenario is one in which an agent would determine 
that two ontologies describe the same domain. This kind of evaluation would be based on 
an overwhelming similarity between the terms in a source and target ontology. That is, 
some large percentage of terms in the source ontology would correspond to terms in the 
target ontology (the term pairs would have a high confidence factor). For any non-trivial 
ontology, the likelihood of its terms matching those in another ontology and yet not being 
conceptually related to that ontology is low. 

8. Summary 
The NCE is intended to be an environment in which automated agents can discover in-
formation and services. A prerequisite of discovery is that the agent be able to infer the 
“meaning” of a discovered term. Ontologies have been proposed as one mechanism to 
enable inference. For this mechanism to work, there must exist some means to discover 
and state the conceptual similarities that exist between ontologies. 
This paper builds on LOM, an existing tool to help analysts create mappings between on-
tologies. The extension to LOM capitalizes on the similarities we expect to exist between 
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two ontologies that deal with command and control. In particular, the use of the 
JC3IEDM provides a more specific context for term resolution than does LOM’s use of 
SUMO and MILO. This should improve the precision of the confidence factors the algo-
rithm generates. The approach is clearly less of a general-purpose aid than LOM, but C2 
is an important application area. The NCE will contain many ontologies that include C2 
concepts. A domain-specific algorithm should fill a comfortable niche. 
Like LOM, the framework in which this paper’s approach is used requires human as-
sessment of confidence factors. Technology has not reached the point where automated 
tools can be trusted to infer contextual similarity. However, any improvement that de-
creases analysts’ workloads should be welcome. 
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