Scientific and Graphic Design Foundations for C2

Paul Havig and Foo Meng Ng
Contact Information

Paul Havig
AFRL/HECV
2255 H St
Wright-Patterson AFB
Ohio 45433
937-255-3951
Paul.Havig@wpafb.af.mil

Foo Meng Ng
Human Factors Engineering Laboratory
Defence Medical and Environmental Research Institute
DSO National Laboratories
27 Medical Drive, #11-00
DSO Kent Ridge Building
Singapore 117510
nfoomeng@dso.org.sg
Introduction

• Lots to cover in a little time
 – Graphic Design
 – Psychology
 – Our approach
• Will only hit the major points
• We are expanding the paper into a web-based document for ease of use
Graphic Design

• Layout
 – Literally the aesthetic of the display design

• Typography
 – Serif versus sans serif
 – Font sizes
 • Note display type is an issue
 – Small versus large screen
 • Note viewing angle
 – Also note display medium
 • Paper has great resolution!
• Color

– Associations

<table>
<thead>
<tr>
<th>Color</th>
<th>Associated meanings</th>
<th>Color</th>
<th>Associated meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Stop, fire, hot, danger</td>
<td>Blue</td>
<td>Cold, water, calm, sky, neutrality</td>
</tr>
<tr>
<td>Yellow</td>
<td>Caution, slow</td>
<td>White</td>
<td>Neutrality</td>
</tr>
<tr>
<td>Green</td>
<td>Go, OK, clear, vegetation,</td>
<td>Grey</td>
<td>Neutrality</td>
</tr>
<tr>
<td></td>
<td>safe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– Consistency and redundancy
Graphic Design

- Data graphics
 - Data-ink ratio (Tufte, 1983)

- Small multiples (Baker & Bushell, 1995)

![Data graphics examples](image_url)
Visual Perception

Perceptual organization

<table>
<thead>
<tr>
<th>Gestalt Principle</th>
<th>Example Figure</th>
<th>Verbal Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law of Simplicity</td>
<td></td>
<td>Every object is perceived in a way that the resulting structure is as simple as possible.</td>
</tr>
<tr>
<td>Law of Closure</td>
<td></td>
<td>Tendency to close gaps and complete unfinished objects.</td>
</tr>
<tr>
<td>Law of Similarity</td>
<td></td>
<td>Elements which look similar (example, size, color, orientation, velocity and shape) are perceptually grouped together as a object.</td>
</tr>
<tr>
<td>Law of Good Continuity</td>
<td></td>
<td>Elements that are smooth and continuous are perceptually grouped together than ones that contain abrupt changes in direction.</td>
</tr>
<tr>
<td>Law of Connectedness</td>
<td></td>
<td>Elements that are physically connected are perceptually grouped together as a object.</td>
</tr>
<tr>
<td>Law of Proximity</td>
<td></td>
<td>Elements that are close together are perceptually grouped together as a object.</td>
</tr>
<tr>
<td>Law of Common Fate/Common orientation</td>
<td></td>
<td>Elements with the same moving direction or orientation are perceptually grouped together as a object.</td>
</tr>
<tr>
<td>Law of Balance/Symmetry</td>
<td></td>
<td>Elements in symmetrical alignment are perceptually grouped together as a object.</td>
</tr>
<tr>
<td>Law of Common Region</td>
<td></td>
<td>Elements tend to be group if they are located within a common region. The closed contour tends to be perceived as the boundary of the object.</td>
</tr>
</tbody>
</table>
Visual Perception

• Pre-attentive processing
 – Certain information “pops” out
 – Other information cannot be “ignored”

• Two examples
 – Stroop
 – Visual Search
• Stroop task (say the color as quickly as possible)
 – Humans can’t not read the color name

RED RED
Visual Perception

- Find the vertical bar
Visual Perception

- Find the diagonal bar
Visual Perception

• Theories of visual attention
 – Space-based – attention distributed over space irrespective of objects
 • “Spotlight” theories of attention
 – Object-based - attention distributed based on objects (e.g., Gestalt laws)
 • Resource allocation theories of attention
 – Both (see Logan, 1996)
Visual Perception

• Theories of visual attention cues
 – Exogenous – automatic response to visual cue

B
G
C
F
M

P
X
R

B
G
C
F
M

P
X
R

*
Visual Perception

- Theories of visual attention cues
 - Endogenous – under voluntary control
Visual Perception

• 3D and depth perception
 – Monocular versus binocular

• Do we need 3D
 – What is true 3D
 – When is it useful?
• Memory and displays?
 – Sensory memory
 • Sperling experiments
 – Short term memory
 • Miller’s magic number
 – Long term memory
 • Declarative versus procedural
 – Prospective memory
 • Remembering to remember
• How do we evaluate graphical displays we create?
 – What are the types of experiments?
 – What questions can be asked?
 • e.g., Situation awareness, memory question, or questions about the IVS
• Examples of visual information fall under low and high level visual tasks
• Low level visual tasks - Wehrend and Lewis (1990)
 – Locate
 – Identify
 – Distinguish
 – Categorize
 – Cluster
 – Distribution
 – Rank
 – Compare within entities
 – Compare between relations
 – Associate
 – Correlate
• High level visual tasks - Zhou and Feiner’s (1998)

<table>
<thead>
<tr>
<th>Visual Implication</th>
<th>Type</th>
<th>Subtype</th>
<th>Elemental tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Visual grouping</td>
<td>Proximity</td>
<td>Associate, cluster, locate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similarity</td>
<td>Categorize, cluster, distinguish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuity</td>
<td>Associate, locate, reveal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closure</td>
<td>Cluster, locate, outline</td>
</tr>
<tr>
<td></td>
<td>Visual attention</td>
<td></td>
<td>Cluster, distinguish, emphasize, locate</td>
</tr>
<tr>
<td></td>
<td>Visual sequence</td>
<td></td>
<td>Emphasize, identify, rank</td>
</tr>
<tr>
<td></td>
<td>Visual composition</td>
<td></td>
<td>Associate, correlate, identify, reveal</td>
</tr>
<tr>
<td>Signalling</td>
<td>Structuring</td>
<td></td>
<td>Tabulate, plot, structure, trace, map</td>
</tr>
<tr>
<td></td>
<td>Encoding</td>
<td></td>
<td>Label, symbolize, portray, quantify</td>
</tr>
<tr>
<td>Transformation</td>
<td>Modification</td>
<td></td>
<td>Emphasize, generalize, reveal</td>
</tr>
<tr>
<td></td>
<td>Transition</td>
<td></td>
<td>Switch</td>
</tr>
</tbody>
</table>
How to Apply to C2 Information Displays

• Don’t apply en masse – use as needed

• What if one is building from the ground up?
 – Not done perfectly (we all have biases)
 – Can test by component parts first
 – Interdisciplinary background teams essential

• So how does one test the “final product”
 – Again test components first
 – Test in small settings before large
 – Keep abreast of testing research and theories
It's QUESTION TIME!!

Paul.Havig@wpafb.af.mil

nfoomeng@dso.org.sg