On Regarding C2 Systems & Users as Fallible ePartners

Tim Grant, Paul van Fenema, Maarten van Veen (NLDA), & Mark Neerincx (TNO)
TJ.Grant@NLDA.nl
Outline

Goal:
• To propose research programme into fallibility in C2, C2 systems, & users

Structure:
• Motivation
• 21st century C2 systems
• Fallibility of C2 systems & users
• Managing fallibility
• Applying ePartner approach
• R&D and experimentation needed
Introducing myself

Qualifications:
• BSc Aeronautical Engineering, Bristol, UK
• Defence Fellowship (Masters), Brunel, UK
• PhD Artificial Intelligence, Maastricht, NL

Experience:
• 1966-87: Royal Air Force officer, UK & SG
• 1987-2004: Consultant, Atos Origin, NL: Dutch-French ICT company
• 2001-date: Professor, U. Pretoria, ZA: Computer Science Department
• 2004-date: Professor, NLDA, Breda, NL: Operational ICT & Communications
Motivation

NCW tenets ("value chain"):

- Better networks
- Better sharing
- Better understanding
- Better decisions
- Better effects
- Better actions
- Effects superiority
- Agile, improved tempo
- Decision superiority

But what if information being shared is erroneous?

Robust
More secure
More extensive
Knowledge superiority
Information superiority

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
21st century C2 systems (1)

Traditional C2:

• Based on rational decision making:
 N.B. rational = choosing best immediate outcome
 Option selection is central
 PRO: optimal
 CON: needs perfect information; no time pressure

• Organizational decomposition:
 Hierarchy; specialisations; stove-pipes
 PRO: simple to implement
 CON: wicked problems are not decomposable

• Restricted communication:
 Technological & security restrictions
 Reporting chain; need to know principle
 PRO: minimise comms links; control information flow
 CON: delay; learn jargon; informal comms poorly supported

Raiffa, 1968
21st century C2 systems (2)

Information-age C2:

• Rational -> naturalistic decision making:
 - Situation assessment central
 - Based on knowledge & experience
 - PRO: agile; satisficing
 - CON: open to error; fails in novel situations

• Decomposition -> networked organization:
 - Information sharing (push, smart pull) central
 - PRO: wicked problems handled collaboratively
 - CON: complicated to implement; sharing intent

• Restricted -> free communication:
 - Information flows to nodes that can process it
 - PRO: fast; self-organizing
 - CON: bandwidth; culture; conflicts need-to-know

Klein, 1999
21st century C2 systems (3)

C2 systems

Sense-making & Decision-making

Understanding

Situation Awareness

Situation Assessment

Battlespace Management

Battlespace Monitoring

Operating Environment

Command Intent

Information Domain

Generation & Dissemination of Orders

Physical Domain

Synchronization

Cognitive & Social Domain

Alberts, 2001

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
21st century C2 systems (4)

Military Command Team Effectiveness (CTEF):

- Mission framework
- Task
- Organisation
- Leader
- Team member
- Team

CONDITIONS

PROCESSES

OUTCOMES

- Task focused behaviours
- Team focused behaviours
- Task outcomes
- Team outcomes

Task model

(Task model (eg OODA))

Team model

- AAR
- Process adjustment loop
- Conditions adjustment loop
- Organisational learning loop

Essens et al, 2005 (NATO RTO HFM-087)

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
Fallibility of C2 systems & users (1)

Fallibility:

• Environment
• Hardware & software:
 Platform
 C2 system
• Human users
• Organization / system
• Propagation of errors through network
Fallibility of C2 systems & users (2)

Environment - complexity & uncertainty:

- Characteristics of environment:
 - Goals & task ill-defined, change over time, & may conflict
 - Conditions dynamic
 - Multiple players
 - Closed loop between actions & feedback
 - Real-time
 - Time stress
 - High stakes
 - Decision makers are experts
 - Organizational goals & norms

- Wicked problem:
 - Incomplete, contradictory, changing requirements
 - Solution to one problem creates another problem

Klein & Klinger, 1991
Rittel & Webber, 1973
Fallibility of C2 systems & users (3)

Hardware & software:

- **Hazard rate**
 - Infant mortality phase
 - Random failure phase
 - Wear-out phase

- Maintenance / requirements change
- Hardware
- Software

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
Fallibility of C2 systems & users (4)

Human user errors:
- Mistake:
 Error made during planning
- Slip (action) / lapse (memory):
 Error made during execution

Research into human error:
- Mostly into slips & lapses:
 Phenotypes:
 - How slips appear when expressed as actions
 Genotypes:
 - Mechanisms assumed to be cause of slips
- Mistakes usually have more severe consequences
- Some into deliberate violation of rules / SOPs

Norman, 1981

Norman, 1993

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
Fallibility of C2 systems & users (5)

Organizational / system errors:
• Person versus system approach to error
• System errors:
 Operational constraints
 Resource constraints
 Vague policies
 Culture
 Groupthink
 Normalization of deviance
 Organizational drift / mission creep

Reason, 2000
Janus, 1983
Vaughn, 1996
Snook, 2000
Fallibility of C2 systems & users (6)

Network resilience:
• Robust to removal of random nodes
• Removal of highly-connected nodes is devastating

Error propagation:
• Epidemiological processes:
 Diseases, viruses, rumours:
 • Regard erroneous information as disease, virus, or rumour
 Original models assumed fully-connected networks
 Partly-connected networks give disease clusters
 In power-law networks diseases always propagate:
 • Internet shown to be power-law network
• Controlling error propagation:
 Vaccination of highly-connected nodes most effective
 Problem is knowing which nodes are highly-connected

Newman, 2003

Callaway et al, 2000

ICCRTS07: (Grant et al) On regarding C2 systems & users as fallible ePartners
Managing fallibility (1)

Defence in depth:
- Swiss cheese model

High reliability organizations (HROs):
- Preoccupation with failure
- Reluctance to simply interpretations
- Sensitivity to operations
- Commitment to resilience
- Deference to expertise

Crew Resource Management (CRM):
- Aviation analogue
- Threat & error management model (TEMM)
- Cultural influences

Reason, 2000
Weick & Sutcliffe, 2001
Helmreich, 2000
Managing fallibility (2)

Latent threats
Scheduling, vague policies, culture: national, organisational, professional

Immediate threats
Environmental, organisational, individual, team/crew, & PUC factors

Threat management strategies & countermeasures

Error management

Error → Detection & response → Induced PUC state → Management of PUC state → Inconsequential → Adverse outcome

Helmreich, 2000
Applying ePartner approach (1)

Human partners:
- Come to know each other’s qualities & foibles
- Anticipate other partner’s needs & behaviour
- Adjust support for partner depending on situation
- Detects & mitigates other partner’s errors

Set of partners:
- Complex Adaptive System

Morowitz & Singer, 1995
Applying ePartner approach (2)

ePartner concept:
- User & system as partners:
 Instead of supervisor-subordinate or even master-slave
- Requires additional capabilities of system:
 Sensing mental state:
 - Facial expression & voice analysis
 - Physiological measures
 Sensing context
 Modelling user’s cognitive task load
 Multi-modal HCI

Neerincx, 2003a/b
Applying ePartner approach (3)

Applying ePartner concept to C2 systems:
- Incorporate sensors
- Input information regarded as potentially erroneous:
 Fault detection, isolation & recovery (FDIR) in each node
- Manage fallibility using TEMM
- CRM training for users

Space analogue:
- Astronaut-rover teams on Mars
- MECA project:
 For European Space Agency
 See www.CrewAssistant.com
R&D and experimentation needed (1)

Research:

- **Human error in C2:**
 What are threats, types of error, & countermeasures in C2?
- **C2 system connectivity:**
 Do C2 networks follow power law?
- **Erroneous planning:**
 Do human planners make errors? Why? What do they look like?
- **Operationalizing Wieckian sensemaking:**
 How do experts make sense of novel situations?
 Can this be turned into algorithm / decision support?
- **Cognitive engineering:**
 How can cognitive engineering be adapted to C2 systems?
- **Surprising the enemy:**
 Can we harness Murphy’s law to exploit enemy errors?
- **Widening concept of security:**
 What are the commonalities between security & RAMS?
R&D and experimentation needed (2)

Experimentation:
- Structure of C2 systems:
 How can C2 networks be structured to maximise difficulty for enemy to identify key nodes & links?
- Interaction between ePartners & users:
 How do ePartners & users interact?
 What should be included in user education & training?

Development:
- Test-bed:
 Develop test-bed with failure/error injection
 Extend test-bed to become training environment
- C2 system architectures:
 Develop failure-/error-tolerant C2 system architecture
Any questions?