An Operator Function Taxonomy for Unmanned Aerial Vehicle Missions

Carl E. Nehme
Jacob W. Crandall
M. L. Cummings
Motivation

• UAVs being asked to perform more and more missions
 – Military
 – Commercial

• Makes it hard to keep up with GCS needs
 – Rapidly evolving systems
 – Dynamic human operator cognitive needs

• Need a taxonomy of UAV missions & associated operator functions
Why a Taxonomy?

UAVs are being used for multiple missions
- MQ-1 Predator can perform both reconnaissance and weapons delivery missions

Missions may not have the same interface/information requirements
- Heterogeneity of tasks and vehicles will require an operator to manage dissimilar tasks

UAV imagery during a search for survivors of Hurricane Katrina (credit: Safety Security Rescue Research Center)
Why a Taxonomy?

If we know operator functions of a “new” task, we can leverage research findings/designs from other tasks with similar operator functions

- So the taxonomy needs to specify common operator functions across different missions
- The common functions lead to a common set of information requirements
UAV Mission Taxonomy

• Three tiers
 – Mission types more specific with tree depth

• Taxonomy generic
 – Military
 – Commercial

• Extendable

• Missions closer together have similar characteristics
UAV Mission Taxonomy

Level 1: General Mission Types

- Intelligence/Reconnaissance
 - Mapping
 - BDA
 - Target Acquisition
 - Target Designation
 - Dynamic Target
 - Static Target
Functional/Information Requirements

<table>
<thead>
<tr>
<th>Mission Phases</th>
<th>Phase Goals</th>
<th>Functional/Information Requirements</th>
</tr>
</thead>
</table>
| Planning | - Scheduling of health and status reports | - Threat area information
| | | - Planning path of area to be mapped
| | | - No fly zone information
| | | - Scheduling mechanism
| | | - Decision support for path planning (including loitering)
| Management | - Tracking progress of UAVs and of health and status reports
| | | - Image (map) analysis
| | | - Health and status indicators
| | | - Image analysis tools (zoom, panning, filtering)
| Replanning | - Resource allocation | - Asset coverage re-plan decision support |
Interoperability

- Missions with similar functional/information requirements have higher interoperability
 - We might be able to use the same interface

Example 1:

BDA = Mapping

More interoperable
Interoperability

- Missions with similar functional/information requirements have higher interoperability
 - We might be able to use the same interface

Example 2:

Target Acquisition ≠ Mapping

Less interoperable

Credit: www.cardiofx.com
Operator Functions

- Operator functions specify the responsibility of the human operator in the UAS.
- They do **not** specify how the human operator will implement these functions.

BDA

<table>
<thead>
<tr>
<th>Mission Phases</th>
<th>Phase Goals</th>
<th>Functional/Information Requirements</th>
</tr>
</thead>
</table>
| Planning | - Assessing targets and routes
- Scheduling of order of assessments if more than one
- Scheduling of health and status reports | - Threat area information
- No fly zone information
- Scheduling mechanism
- Decision support for path planning (including loitering) |
| Management | - Tracking progress of UAVs and of health and status reports
- Analyzing BDA results | - Health and status indicators
- Image analysis tools (zoom, panning, filtering) |
| Replanning | - Resource allocation | - Asset coverage re-plan decision support |

- **Operator Functions**
 - Monitoring health and status of UAV
 - Analyzing images
 - Monitoring network communications
 - Resource allocation & scheduling
 - Path planning supervision
 - Optimal position supervision
 - Notifying relevant stakeholders
• Research on missions with similar operator functions can be leveraged

Example 1:

Target Acquisition

Listening

≈

More Carry-over
Carry-over

- Research on missions with similar operator functions can be leveraged.

Example 2:

Payload Delivery ≠ Mapping

Less Carry-over

Credit: http://www.1000pictures.com
Missions with common functional/ information requirement also have many operator functions in common

- Both derived from the same phase goals
Table of Operator Functions

<table>
<thead>
<tr>
<th></th>
<th>Intelligence/Reconnaissance</th>
<th>Drones</th>
<th>Transport</th>
<th>Surveillance</th>
<th>Comm</th>
<th>Extra-ction</th>
<th>Insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mapping</td>
<td>BDA</td>
<td>Target acquisition</td>
<td>Target designation</td>
<td>Decoy</td>
<td>Target</td>
<td>Cargo</td>
</tr>
<tr>
<td>Monitoring payload status</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring network communications</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring health & status of the UAV</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monitoring for sensor activity</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negotiating with other stakeholders</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notifying relevant stakeholders</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal position supervision</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path planning supervision</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analyzing images</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzing other sensor data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Target Identification</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource allocation and scheduling</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking target</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Most Common Operator Functions

- Monitoring health and status of UAV
 - In every mission
 - Should not subsume operator attention
 - Humans not very good at it (max 30 mins)
 - Robust decision support should be developed that leverages automation strengths
Most Common Operator Functions

• Notifying relevant stakeholders
 – Essential that UAV operators can communicate with others
Most Common Operator Functions

• Optimal position supervision
 – Both in the vertical and the horizontal
 • Also need to consider both current and projected position
 – Need robust automation
 • Interactive decision support tools
Most Common Operator Functions

- **Path planning supervision**
 - Due to limited cognitive resources, need automated path planners
 - But users need to be able to interact with them
 - Artificial intelligence path planning algorithms can be “brittle”
Most Common Operator Functions

• **Resource allocation and scheduling**
 – Computationally complex
 – Humans may not perform these tasks well
 – Need automated schedulers humans can interact with
Summary

• We have introduced a taxonomy of UAV missions

• Across missions, the taxonomy includes:
 – Information/functional requirements
 – Operator Functions

• Can potentially be used to
 – Leverage designs & research from one domain to another
 – Identify interoperability between UAV missions