Probabilistic Ontology: The Next Step for Net-Centric Operations

Kathryn Blackmond Laskey, Paulo C. G. da Costa
George Mason University
Kenneth J. Laskey
MITRE Corporation
Edward J. Wright
Information Extraction and Transport, Inc.

Presented at ICCRTS 2007
In the olden days…

- We fought big wars
 - Against monolithic enemies
 - Who employed rigid doctrine
 - And fought in predictable ways

- We built stovepipe systems
 - Used by a single organization for a single purpose
 - Built on idiosyncratic database schema and input-output formats
 - Requiring labor-intensive manual transformation of outputs for use by another stovepipe

...and then the world changed.
Vision: A Net-Centric World

- Autonomous software agents interoperate seamlessly
- Each agent has timely access to mission-critical information
- Agents are not overloaded with unnecessary information
- Information is properly synchronized and up-to-date
- Data from disparate sources is fused into mission-relevant knowledge
- Multi-level security permits needed access while preventing non-authorized use
The Bandwidth Fallacy

Massive Volumes of Data
+ Unlimited Bandwidth
⇒ Net-Centric Vision

Data, data everywhere,
and not the time to think!

Web Services: Enabling Interoperability

SOAP over HTTPS
The P-F-B Triangle

- Find
- Publish
- Bind

Service Registry

Service Consumer

Service Provider
Why Semantics?

Syntax
- *Syntax*: rules of formation for a data type
- *Syntactic interoperability*: applications can process each other’s data formats
- *Example*: 3.2 is a legal floating point number

Semantics
- *Semantics*: the meaning of expressions
- *Semantic interoperability*: applications interpret data in the same way
- *Example*: Diagnostic benchmarks were run on 3.2 GHz processor

Semantic interoperability is a much stronger requirement than type consistency
Semantics in Net-Centric Services

- Semantics in stovepipe systems are in the mind of the human
 - Natural language documentation
 - Code
- Net-centric systems require formal, machine-interpretable semantics
- Semantic information in service descriptions enables consumers and providers to have a common understanding of:
 - What does the service do?
 - What inputs does it require and what results does it produce?
 - What are conditions (constraints/policies) for use?
 - How to invoke it? (Address & WSDL description)
Example: Geospatial Services

- Manual geospatial analysis is tedious, time-intensive, error-prone, and difficult to share
- Advanced Automated Geospatial Tools (AAGTs) delivered through Net-Centric Services promise to provide unprecedented military advantage
 - Reduce time to produce analysis
 - Avoid rework and reduce bandwidth by sending results not raw data
- Semantic interoperability is essential
Uncertainty in Geospatial Data

(from Wright, 2002)

Traditional CCM Display

CCM Display with Uncertainty

<table>
<thead>
<tr>
<th>Speed Range</th>
<th>Prob %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>0 - 3</td>
<td>3</td>
</tr>
<tr>
<td>3 - 6</td>
<td>3</td>
</tr>
<tr>
<td>6 - 10</td>
<td>4</td>
</tr>
<tr>
<td>10 - 15</td>
<td>5</td>
</tr>
<tr>
<td>15 - 20</td>
<td>6</td>
</tr>
<tr>
<td>20 - 30</td>
<td>11</td>
</tr>
<tr>
<td>30 - 45</td>
<td>15</td>
</tr>
<tr>
<td>> 45</td>
<td>26</td>
</tr>
</tbody>
</table>

Predicted CCM Speed (Kph)

0-3 3-10 10-20 20-30 >30

Prediction Quality

Good

Poor

(from Wright, 2002)
Decision Impact of Uncertainty

- Simulation Experiment
- “Ground Truth” CCM product
- “Database” CCM product
- 100 simulated mission - random routes
- Percent Mission Failures as a function of travel time multiplier ("fudge factor")

Fewer mission failures = better decisions when uncertainty information is exploited

(Wright, 2002)
Ontologies and Uncertainty

- Semantically aware systems are essential to the net-centric vision.
- Ontologies are a means to semantic awareness
- Representing and reasoning with uncertainty is essential
- But...

Standard ontology languages provide no support for representing uncertainty in a principled way
PR-OWL: A Language for Expressing Probabilistic Ontologies

- Extends W3C recommended OWL ontology language
- Based on expressive probabilistic logic
- Represents probabilistic knowledge in XML-compliant format.
- Open-source, freely available solution for representing knowledge and associated uncertainty in a principled manner.
- Reasoner under development at University of Brasilia

(Costa, 2005)
Will there be flooding due to recent rains at coordinates xyz?

35% chance of flooding!

SOA Level 0: Semantically unaware (legacy system)
SOA Level 1: Understands and uses Semantics

(Costa, et al., 2006)
Will there be flooding due to recent rains at coordinates xyz?

SOA Level 0: Semantically unaware (legacy system)

SOA Level 1: Understands and uses Semantics

(Costa, et al., 2006)
1. Commander: “I need a minimum of 80% of my predictions from system xxx to be correct, to successfully plan and execute this mission. I need it in 2 days”

2. Producer: “It will take 5 days and cost $zz to produce the data for this mission. Here is what I can do in 2 days. It will provide you an accuracy of 60% of your predictions”

3. Commander: “That’s not good enough. If I give you three days can you give me 75% accuracy on these predictions?”

4. Producer: “Yes, I can do that!”

(Wright, 2002)

- Different organizations simultaneously produce data to different requirements and different specifications
- Requirements redefined “on the fly”
- Probabilistic ontologies represent semantics of data quality and mediate interchange of data among interoperable systems
In Closing…

- Explicit semantics is necessary for interoperable systems
- Semantic information needs to include uncertainty
 - Mission performance is affected when uncertainty is not properly incorporated
 - Annotating a standard ontology with “uncertainty attributes” is not enough.
 - Rich relational representation with uncertainty is needed
- Usable methodologies for building and maintaining probabilistic ontologies are needed
Thank You!