
On the Automatic Generation of an OWL Ontology
based on the Joint C3 Information Exchange Data Model

Christopher J. Matheus1 and Brian Ulicny1

1 Versatile Information Systems, Inc.,

 Framingham, Massachusetts, U.S.A
{cmatheus, bulicny}@vistology.com

Abstract. The JC3IEDM is a data model intended for the exchange of
command, control and communication information. It is available as an ERwin
data model for which there is an XML-based description of all entities,
attributes, relations and codes, making it ripe for translation by XSLT. This
paper describes the development of a set of transformation scripts that convert
the JC3IEDM data model into an OWL ontology; it explains the major
challenges encountered and discusses a number of issues concerning the
practical use of the resulting ontology. While the primary purpose of this work
is to provide the basis for a semantically rich ontology for use in representing
and reasoning about command, control and communication operations, it is also
intended to serve as an example of a general approach for translating ERwin
data models into OWL ontologies.

Keywords: ontology generation, JC3IEDM, ERWin model, automated
translation, XML, XSLT

1 Introduction

The Multilateral Interoperability Programme [1] (MIP) is a long-standing, NATO-
supported program intended to foster international interoperability of Command and
Control Information Systems (C2IS) through the development of standard data
models and data exchange mechanisms. Significant joint coalition effort has gone
into the development of the MIP data model which was first released in the mid to
late 1990’s as various version of the Generic Hub (GH) Data Model; in subsequent
years it became known as the Land Command and Control Information Exchange
Data Model (LC2IEDM), followed by the Command and Control Information
Exchange Data Model (C2IEDM) and now it exists as the Joint Command, Control
and Communication Information Exchange Data Model (JC3IEDM) [2]. The data
model captures information about objects and their properties, situations made up of
facts about objects and activities involving collections of objects. While JC3IEDM is
intended foremost for the exchange of command, control and communication
information between information systems, it is gaining increased considered as the
basis for the general data models that underlie C3 information systems. A primary

reason for this trend is the desire to leverage the great wealth of experience and
knowledge that has gone into the development of JC3IEDM 3.0.

Our particular interest in JC3IEDM is its use as the basis for several ontologically-
based reasoning applications that assist in establishing situation awareness [3],[4].
The first step in making this happen is the conversion of JC3IEDM into the Web
Ontology Language OWL [5]. We demonstrated the feasibility of this task in an
earlier effort that set out to capture a subset of the (then) C2IEDM sufficient for
representing OTH-T GOLD Track data [6]. In that project we manually translated
portions of the data model into OWL, which was reasonable given the scope of that
problem. We recently became interested with the much more challenging task of
developing a complete translation of JC3IEDM into OWL. Given there are 289
entities, 396 relationships between entities, 1729 entity attributes and nearly 7000
value codes, plus the fact that the MIP data model is updated on a regular (one might
say “aggressive”) basis, this task was clearly in need of automation. This paper
describes the methods used to translate JC3IEDM 3.0 into OWL DL using a series of
XSLT scripts. We believe this work will be of interest to others for the following
reasons:

1. We are making the translated JC3IEDM OWL ontology freely available for
others to use; this paper servers as both an announcement of its availability
and as an explanation of why we chose to translate the various aspects of the
data model as we did

2. The translation is performed using the XML document that specifies the

JC3IEDM ERwin data model definition; due to the use of this XSD-defined
document, other ERwin based data models can be translated into OWL using
a similar strategy (and in many cases, the code) that is described here

3. There are a number of interesting questions that arose during the process of

developing the translation, some of which are worth further discussion and
contemplation by a larger community

This paper begins with an introduction to the JC3IEDM data model and the ERwin
XML definition document. Explanations are then given for each of the translation
scripts used to transform Entities, Attributes, Relationships and Codes. We conclude
with a discussion of some open issues and questions.

2 The JC3IEDM

JC3IEDM is a relational data model that can be viewed from one of three
perspectives: conceptual, logical and physical. The conceptual model is an abstract
view of the important high-level data elements (e.g., ACTIONS, PERSONNEL,
FACILITIES, etc.) and is useful for understanding the scope and general content of
the data model. The logical model adds all of the more specific details needed to

understand the logical connections between the elements while striving to be a model
accessible to processing by humans. The physical model is concerned with the
information necessary to implement the data model as a database schema; it extends
the logical model with information about keys and redundant data used for efficiency
purposes and is implemented using ERwin™ Version 3.5.2 software from Computer
Associates International, Inc. The model of most interest to us is the logical model
since we are interested in capturing the logical semantics of the model with no
concern for its realization as an instance of a database schema. We use the conceptual
model in this section to provide a brief overview of its contents.

Fig 1. JC3IEDM Independent Entities shown in IDEF1X notation [7] as they appear
in the Conceptual Model. (Copied from [2])

Fig 1 shows all of independent entities found at the highest level of JC3IEDM

along with the conceptual relationships between them. These relationships represent
conceptual aggregates of finer relationships and additional entities found in the logical
model. Some things to note here include:

1) Most of these Entities are sub-classed in the logical model and in some cases
the hierarchy of classes can be relatively deep (i.e., greater than 5).

2) There are two high-level object classes, OBJECT-TYPE and OBJECT-ITEM.

OBJECT-TYPE is used for more static information associated with an entire
class of objects (e.g., the track width of an Abrams Tank, its maximum speed,
etc.) whereas OBJECT-ITEM is used to capture information specific to
individuals (e.g., the speed of a tank, the fact it has 5 gallons of gas, etc.).

3) The OBJECT-TYPE and OBJECT-ITEM entities have parallel class/subclass

hierarchies as shown (to a depth of one) in Fig 2. The hierarchies do not fully
mirror each other, particularly deeper within the structures, but they are
closely related.

4) REPORTING-DATA represents pedigree information that is used extensively

to identify when, from whom and how reliable/credible a specific piece of
information is.

For more detailed information about the JC3IEDM conceptual and logical models

the reader is referred to the following online MIP documents: JC3IEDM Overview
[8], JC3IEDM Main [2], JC3IEDM Logical Model Diagram [9].

Fig 2. Conceptual relationship between OBJECT-TYPE and OBJECT-ITEM Entities
along with a depiction of the first level of subclasses for each suggestive of the
parallel hierarchies used for OBJECT representation in JC3IEDM. (Copied from [2])

3 ERwin XML Definition

The JC3IEDM 3.0 release comes complete with thorough documentation, a Microsoft
Access database and an XML distribution package that includes code and support
files for generating (in terms of XML Schemas) both an object-oriented mapping of
the data model to XML and a relational mapping of the data model to XML. These
XSD are generated from an ERwin XML definition document that contains the entire
model for JC3IEDM (i.e., both logical and physical views). It is this XML definition
document that we used as the basis for our translation effort.

For our purposes we are only interested in the logical aspects of the ERwin model.
The following abstract code based on the ERwin XML definition document shows the
structure of the relevant fragments of the document that our translation scripts focus
on.

<ERwin4>
 <Entity_Groups>
 <Entity>

 <EntityProps/>
 <Attribute_Groups>
 <Attribute/>
 …
 </Attribute_Groups>
</Entity>
<Domain_Groups>
 <Domain/>
 …
<Domain_Groups>
<Relationship_Groups>
 <Relationship/>
 …
</Relationship_Groups>
<Validation_Rule_Groups>
 <Validation_Rule/>
 …
</Validation_Rule_Groups>

</ERwin4>

All of the elements of interest are located within five named element groups:
Entity_Groups, Attribute_Groups, Relationship_Groups, Domain_Groups and
Validation_Rule_Groups. The elements in the Entity_Group include specific Entities
that will become owl:Classes along with their corresponding Attribute_Groups which
in turn contain the specific Attributes for the corresponding Entities; each of these
Attributes will become either an owl:ObjectProperty or an owl:DatatypeProperty.
The Relationship_Groups contain the Relationships that can occur between Entities,
each of which will be turned into owl:ObjectProperties. The Domain_Groups in
conjunction with the Validation_Rules_Groups contain the values that are permitted
for the domains and ranges of the Attributes; some of these correspond to specific
Codes that imply specific meaning and will be captured within enumeration classes
within OWL [10].

4 Entity to Class Translation

The script to translate entities into classes separately processes each Entity element in
the ERwin definition document. It uses the Name attribute of the Entity element for
the rdf:ID of the owl:Class and selects the EntityProps/Name element textNode to use
as the rdfs:label of the class1. The EntityProps/Definition element’s contents is used
as the rdfs:comment for the class as it provides a English text description of what the
class represents. All Entities are defined as owl:Classes using the following minimal
format (which borrows from XSLT’s convention of using {} to indicate references to
XPATH addresses within the current element):

<owl:Class rdf:ID=”{@Name}”>
 <rdfs:label>{EntityProps/Name}</rdfs:label>
 <rdfs:comment>{EntityProps/Definition}</rdfs:comment>
</owl:Class>

For example, the following code is generated when the @Name=”ACTION”,

EntityProps/Name=”ACTION” and EntityProps/Definition is equal to the text shown
in the rdfs:comments element:

 <owl:Class rdf:ID="ACTION">
 <rdfs:label rdf:datatype="&rdf;Literal">ACTION</rdfs:label>
 <rdfs:comment>An activity, or the occurrence of
 an activity, that may utilise resources and may
 be focused against an objective.
 </rdfs:comment>
 </owl:Class>

Many of the Entities exist as sub-classes of at most one other entity (i.e., the data

model is represented as a collection of trees). An Entity is the subclass of a parent
Entity if it exists as a Valid_Value for the parent Entity’s category-code Attribute.
Since each Entity has at most one parent, it is possible to search to see if there is a
Validation_Rule that has the child Entity within its list of Valid_Values and then look
up the Entity that has an Attribute that has a Parent_Domain that uses that
Validation_Rule. In shorthand XSLT code, this reads as follow:

ruleID="//Validation_Rule[Valid_Value_Groups/Valid_Value/Valid_ValueProp
s/Display=$entityName]/@id"

domainID="//Domain[DomainProps/Validation_Rule_Ref=$ruleID]/@id”

parentEntityName="//Entity[Attribute_Groups/Attribute/AttributeProps/Par
ent_Domain=$domainID]/@Name"

An Entity for which the parentEntityName is non-null is designated to be a
owl:subClassOf the parent Entity.

1 The Name attribute and the EntityProps/Name element are always equal in the current

JC3IEDM 3.0 definition but there is no explicit reason for this to remain the case in future
releases.

Unfortunately, all classes of objects are not defined as entities – only those that have
additional Attributes or Relations appear as Entities and all others are represented by
values of category-codes. A category-code value is a string the uniquely identifies a
sub-class of an Entity – that is to say, the string is unique among the subclass names
for a particular Entity, but it may be used as a subclass name for more than one Entity.
Entities that have subclasses defined in this way will have an Attribute whose name is
the entity’s name in lowercase with the string “category-code” appended to it, e.g.
“object-type-category-code” for the entity OBJECT-TYPE. Furthermore, there will
be a Domain for this Attribute with the same name. To define all of the subclasses
defined by this Domain it is necessary to iterate over all of the Domain’s
Valid_Values as defined by its Validation_Rule, and for each value that is not the
name of a defined Entity (category-code values include all subclasses, both those that
are actual Entities and those that are not) a new owl:Class is created exactly as
described above for Entities but in this case the parent class is already known and so
the new class is always defined to be a owl:subClassOf its parent.

There is one slight complication to the construction of these category-code classes.
As indicated above, it is possible for a category-code string to be used as the name for
a subclass in more then one category-code Attribute. This means that it is not
possible to use the category-code value alone as the class’ rdf:ID, owing to the
requirement that rdf:ID be unique within a single ontology. A test is therefore
performed to see if there is an earlier use of the category-code string by another Entity
and if so, the name of the parent class is prepended to the string to construct the
class’s rdf:ID. We could have simplified the code by always prepending the parent
class name but in striving to make the rdf:IDs as human-friendly as possible we felt it
was better to leave the parent class names off whenever possible.

5 Attribute to Property Translation

Every Attribute element in the JC3IEDM definition is processed and turned into
either an owl:DatatypeProperty or an owl:ObjectProperty provided its @Name
attribute does not contain any of the following strings: -category-code, -id,
-index, ent_cat_code, -update_seqnr and -uodate_seqnr. If the
@Name attribute contains “-category-code” then it will be handled by the script that
translates Entities (as described in the preceding section) and its values will be turned
into owl:Classes. The -id Attributes used in the physical model are not necessary in
the OWL ontology as they are taken care of by each instance’s unique rdf:ID
attribute. The -indexes and ent_cat_code Attributes are part of the physical model
and are thus excluded. The update_seqnr Attributes are used in the JC3IEDM model
for “replication management” and specify the relative seniority of a data element;
since this information is not relevant to the representation of the data in OWL these
Attributes are ignored. The appearance of an Attribute containing the string
“uodate_sequr” is assumed to be an error in the definition file (it appears that the “o”
should have been a “p”).

Attributes can represent either owl:ObjectProperties or owl:DatatypeProperties.

Attributes that range over a category-code are identified as owl:ObjectProperties
because all category code’s are translated into owl:Classes. The range for these
properties are defined by the Attribute’s corresponding Parent_Domain; the name of
the owl:Class for the range is obtained by removing hyphens from the Domain name
and capitalizing the first letter of each hyphenated substring. For example, the
Domain name angle-precision-code becomes the class name AnglePrecisionCode.

For Attributes corresponding to owl:DatatypeProperties it is necessary to do some

further processing to determine which XSD datatype should be used for the
rdfs:range. Datatype information is either encoded at the level of the AttributeProps
or at the level of the the Domain specified by the Attribute’s Parent_Domain. If the
former is specified it is assumed to take precedence over the later. In either case the
value of the Datatype element will match to one of the patterns in the following table
and the corresponding XSD datatype is used as the range:

Datatype value XSD Datatype
--------------------------- ------------
NUMBER(*,*) xsd:decimal
NUMBER(*) xsd:integer
CHAR(*) | VARCHAR(*) | BLOB xsd:string
DATE xsd:dateTime

There is one exception to the handling of Attributes as just described. Attributes

that end with the string “-dimension” do not always have an explicit Datatype
associated with itself or with its Parent_Domain. In all of these cases the value
should be a numeric value (at least sometimes a number with some decimal places)
and xsd:decimal is the XSD datatype that is used.

The following shows a typical DatatypeProperty produced by the translation script:

<owl:DatatypeProperty
 rdf:ID="action-aircraft-employment-ingress-direction-angle">

 <rdfs:comment>The numeric quotient value that represents the
 portion of a whole OBJECT-ITEM that is estimated in a specific
 ACTION-EFFECT-ITEM to have the result specified in ACTION-EFFECT.

</rdfs:comment>
<rdfs:domain rdf:resource="#ACTION-AIRCRAFT-EMPLOYMENT"/>
<rdfs:range rdf:resource="&xsd; decimal"/>

</owl:DatatypeProperty>

6 Relationship to ObjectProperty Translation

Every Relationship in JC3IEDM is mapped into a an owl:ObjectProperty having a
unique rdf:ID. Because the data model often uses relationship names for multiple
relationships (e.g., has, is-the-object-of, etc.) it was necessary to either define new
classes consisting of the union of the multiple classes that these relations used for
their domains and ranges, or derive a naming scheme that would guarantee unique

relation names. The first option was deemed undesirable because it would have
meant the loss of semantic content and would have permitted relations to be formed
between pairs of classes that could not occur with JC3IEDM. The second option does
not suffer from this problem but it results in names that are much longer and that are
not always as easy to read and write (from a human processing perspective). The
simplistic (but perfectly disambiguating) approach whereby the rdf:ID for an
owl:ObjectProperty is created by pre-pending the domain class with the relation name
and then appending the range class was unsatisfactory to the authors as the names
became exceedingly long (e.g. OPERATIONAL-INFORMATION-GROUP-ORGANISATION-
ASSOCIATION-has-OPERATIONAL-INFORMATION-GROUP-ORGANISATION-ASSOCIATION-

STATUS). To remedy this we decided to turn the class names into abbreviations using
the first letter from each of its hyphened strings (e.g. OIGOA-has-OIGOAS).
Unfortunately, there where a few cases where different relations resulted in the same
name identifier resulting from the identical abbreviations for OBJECT-ITEM-
AFFILIATION and OBJECT-ITEM-AFFILIATION. We contemplated augmenting
our script to detect such cases and then disambiguating the relation names by adding
an additional character to one of the identifiers. But given that there was only one
case in which there was a problematic clash in class name abbreviations, we opted to
simply catch this case in the XSLT script and force the abbreviation for OBJECT-
ITEM-AFFILIATION to be OIAf instead of OIA. It is possible that future releases of
JC3IEDM may introduce new class names that will cause additional name clashes but
since we always intend to automatically check for the consistency of the generated
OWL ontology we are sure to catch these cases and patch them, or reconsider a more
automated fix.

In addition to defining the rdf:ID, rdfs:domain and rdfs:range for each

owl:ObjectProperty defined by each relation it was also possible for a relation to be
an inverse of some other relation and to have a cardinality constraint. The inverse
was easy to identify from the RelationshipProps/Child_To_Parent_Phrase; all that
was required to obtain the unique rdf:ID was to apply the same naming convention as
for the relation’s rdf:ID except for swapping the domain for the range and the range
for the domain and using the Child_To_Parent_Phrase for the relation name.

Cardinality constraints were also easy to determine by testing for the presence of

the Child-cardinality-code optionally specified in the Relationship_Props. The
possible values for this code in the current release of JC3IEDM are:

Code Meaning OWL implications
---- ----------------- ------------------
 PM one or more minCardinality=”1”
 ZO zero or one FunctionalProperty
 ZM zero, one or more nothing

In cases where the code ia “ZO”, an rdf:type of owl:FunctionalProperty is added to
the property, as in the following example:

<owl:ObjectProperty rdf:ID="AT-is-used-in-the-definition-of-FC">
 <rdfs:domain rdf:resource="#AMMUNITION-TYPE"/>
 <rdfs:range rdf:resource="#FIRE-CAPABILITY"/>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:ObjectProperty>

When the code is “PM” an owl:Restriction is created for the domain class specifying
a minCardinality=“1” on the relevant owl:ObjectPropety. Here is an example of the
translation of a relation with an inverse relation and a minimum cardinaility of 1:

<owl:ObjectProperty rdf:ID="CA-has-CAS">
<rdfs:domain rdf:resource="#CONTEXT-ASSOCIATION"/>
<rdfs:range rdf:resource="#CONTEXT-ASSOCIATION-STATUS"/>
<owl:inverseOf rdf:resource="#CAS-is-ascribed-to-CA"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="CAS-is-ascribed-to-CA"/>

<owl:Class rdf:about="#CONTEXT-ASSOCIATION">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#CA-has-CAS"/>
 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1

 </owl:minCardinality>
</owl:Restriction>

 </rdfs:subClassOf>
</owl:Class>

7 Codes to Enumeration Classes Translation

Many of the Attributes in the JC3IEDM range over values that are codes having
corresponding text descriptions of their meaning. These codes are organized into
Domains that have associated Validation_Rules to define the set of Valid_Values. It
would be possible to write an XSLT script to run through the Domains and create an
enumeration class in OWL that is populated with instances derived from the
Validation_Rules. The MIP distribution, however, also has these codes organized
within an XSD file making them even easier to process: for each simpleType create
an owl:Class is created using the simpleType/@name as the rdf:ID and defining the
class as being owl:oneOf a Collection of class instances, one instance corresponding
to each restriction/enumeration element, the rdf:ID of which is set to the
restriction/enumeration/@value. This would be all that was required except for the
recurring problem of name clashes: many codes are used repeated as values in
multiple Domains. Our work-around for this situation is to count the number of
previous occurrences of the current code and if it is greater than zero we append the
count to the name of the class rdf:ID. The following is an example of a very short
Code enumeration class:

 <owl:Class rdf:ID="ActionTaskOvertCovertCode">
 <rdfs:comment> The specific value that represents the property
 of an ACTION-TASK to be overt or covert.
 </rdfs:comment>

 <owl:oneOf rdf:parseType="Collection">
 <ActionTaskOvertCovertCode rdf:ID="COVERT">

 <rdfs:label>COVERT</rdfs:label>
 <rdfs:comment>
 The ACTION-TASK is to be conducted secretly.
 </rdfs:comment>
 </ActionTaskOvertCovertCode>

 <ActionTaskOvertCovertCode rdf:ID="OVERT">
 <rdfs:label>OVERT</rdfs:label>
 <rdfs:comment>
 The ACTION-TASK is to be conducted openly.
 </rdfs:comment>
 </ActionTaskOvertCovertCode>

 </owl:oneOf>
 </owl:Class>

8 Discussion

The JC3IEDM OWL ontology produced by our translation scripts was split up across
five files: one each for the code to represent Entities, Attributes, Relations and Codes
plus one top level file to import the other four. These files were submitted to
ConsVISor (Versatile Information Systems’ free RDF/OWL consistency checking
Web service) [11],[12],[13] and (once the scripts were fully debugged) the ontology
passed with no detected errors or warnings.

To indicate the relative size of the JC3IEDM OWL ontology and the code used to

generate it, we provide in Table 1 a summary of quantitative characteristics such as
the number of lines of code, the number of classes, the number of various types of
properties and the number of unique rdf:IDs.

Table 1: Quantitative Summaries

Element/Attribute Quantity
Lines of XSLT code 470
Lines of OWL code >50,000
rdf:IDs 7932
All Classes 2921
Enumeration Classes 272
All Properties 923
ObjectProperties 617
DatatypeProperties 306
InverseProperties 116
minCardinality=1 9
FunctionalProperties 3

The resulting ontology is clearly very large and would likely be a challenge to the
processing capabilities of most RDF/OWL reasoners. For our purposes, only a small

subset of the ontology is ever necessary for a reasoning task and we will likely be
implementing a “partial import” functionally similar to that proposed in [14].

Even though the ontology is quite large it is fair to ask how much of the actual
semantics of the domain has been capture? In virtually all cases an element in the
model is accompanied by a Definition that provides English text description of its
meaning. It is clear from simple observation of the samples shown in this paper that
there is much more meaning in these Definitions than is captured by the relationships
among the classes or the restrictions placed on the use of properties. It is not at all
clear, however, how one would begin the effort to extend the semantic content of the
ontology and any such effort would be ad hoc without some way of validating the
extensions with the authors of the text definitions. This is perhaps the most
significant open problem related to the use of our proposed JC3IEDM OWL ontology.

One might argue that the class hierarchies reflect important structural relationships

that have direct relevance to reasoning about inherited characteristics of instances.
Unfortunately part of this type of reasoning that is built into OWL cannot be fully
leveraged due to the parallel hierarchies of OBJECT-TYPE and OBJECT-ITEM. If
an instance of a UNIT (a subclass of ORGANIZATIN which is a subclass of
OBJECT-ITEM) has the property is-classified-as (in the OWL ontology
this property is OI-is-classified-as-OIT) whose value is that of an instance of a TANK
(a subclass of WEAPONRY-TYPE, EQUIPMENT-TYPE, MATERIAL-TYPE, and
finally OBJECT-TYPE) the UNIT instance will not automatically inherit the
properties of the TANK instance, even though this is clearly the intention. This
failure in hierarchical reasoning results because OBJECT-TYPE and OBJECT-ITEM
are related through another class (OBJECT-ITEM-TYPE) via the is-classified-as
property rather than via the owl:subClassOf property. To obtain this form of is-a
reasoning between OBJECT-ITEMS and OBJECT-TYPES will require going outside
of OWL (e.g., implementing the logic in a rule language such as SWRL);
alternatively one might contemplate the merging of the two parallel hierarchies (as
suggested in [6]) but this would come at a cost as described in the next paragraph.

Although the use of parallel OBJECT hierarchies throws a monkey wrench into the

use of OWL semantics it affords the feature of being able to change the type of an
object overtime and in fact it is possible to have an instance be associated with
multiple disjoint types at once. This capability is important when dealing with
“reported” type information, such as when an enemy UNIT is reported to be a “T80
Tank” by one spot report and a “piece of Artillery” by some other report. If it was
necessary, in this case, to force the UNIT to be an instance of both classes this could
result in an inconsistency. In JC3IEDM, the UNIT is merely reported as being of
some OBJECT-TYPE by some reporting entity through a REPORTING-DATA
instance that specifies a specific time and data source. In this manner, all reported
information is “reified” via their REPORTING-DATA instances making it possible
for reported data to be different at different times or even be incompatible with other
reported data without violating OWL’s monotonic imperative.

While the focus in this paper has been on JC3IEDM the majority of the work in
developing the scripts was spent figuring out how to extract the appropriate
information from the ERwin XML definition in order to generate the appropriate
classes and properties. This work (and the major portion of the scripts) can be reused
on any other ERwin data model for which an XML definition document has been
generated.

9 Conclusions

This paper presented the authors’ efforts to automatically translate JC3IEDM into an
OWL ontology for use by systems that reason about C3 and situation awareness.
Four XSLT scripts where written to convert 1) Entities into owl:Classes, 2) Attributes
into owl:DatatypeProperties and owl:ObjectProperties, 3) Relationships into
owl:ObjectProperties and 4) Codes into OWL enumeration classes. The biggest
challenges were encountered in devising automated means for arriving at nearly 8000
unique rdf:ID’s. In the discussion section a number of issues were raised, in
particular, the shear size of the ontology, the question of semantic content in the
ontology relative to the meaning encoded in the text Definitions of the Entities,
Attributes and Codes, the inability to inherit from the OBJECT-TYPE hierarchy, the
advantage of reifying reported information through the use of the REPORTING-
DATA class and, finally, the potential use of this work for translating other ERwin
based data models.

Acknowledgments. The work described in this paper was partially supported by U.S.
ONR STTR Contract Number N00014-05-C-0367 and U.S. Army SBIR Contract
Number W15P7T-05-C-T204.

References

1 Multilateral Interoperability Programme. http://mip-site.org/

2 MIP, Joint C3 Information Exchange Data Model (JC3IEDM Main), Greding,
Germany, December 2005.

 http://mip-site.org/publicsite/Baseline_3.0/JC3IEDM-
Joint_C3_Information_Exchange_Data_Model/JC3IEDM-Main-UK-DMWG-
Edition_3.0_2005-12-09.pdf

3 C. Matheus, M. Kokar, K. Baclawski and J. Letkowski, An Application of
Semantic Web Technologies to Situation Awareness. In Proceedings of the 4th
International Semantic Web Conference, ISWC 2005, Galway, Ireland,
November, 2005.

4 C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman, J.
Salerno and D. Boulware, SAWA: An Assistant for Higher-Level Fusion and

Situation Awareness. In Proceedings of SPIE Conference on Multisensor,
Multisource Information Fusion, Orlando, FL., March 2005.

5 W3C, OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.

6 E. Dorion, C. Matheus and M. Kokar, Towards a Formal Ontology for Military
Coalitions Operations. In Proceedings of the 10th International Command &
Control Research and Technology Symposium, McLean, VA, June 2005.

7 MIP, JC3IEDM Annex I: Summary of IDEF1X Data Modelling Methodology and
Notation. Greding, Germany, December 2005.

8 MIP, JC3IEDM Overview, Greding, Germany, December 2005.

http://mip-site.org/publicsite/Baseline_3.0/JC3IEDM-
Joint_C3_Information_Exchange_Data_Model/JC3IEDM-Overview-UK-
DMWG_Edition_3.0_2005-12-09.pdf

9 MIP, JC3IEDM Model Diagram. Greding, Germany, December 2005. http://mip-
site.org/publicsite/Baseline_3.0/JC3IEDM-
Joint_C3_Information_Exchange_Data_Model/JC3IEDM-
MODEL%20DIAGRAM-Edition_3.0_2005-12-09.pdf

10 W3C Working Group Note. Representing Specified Values in OWL: "value
partitions" and "value sets" Rector, A (Ed.), 17 May 2005.
http://www.w3.org/TR/swbp-specified-values/

11 The ConsVISor Web Service for checking RDF/OWL ontologies.
http:www.vistology.com/consvisor

12 K. Baclawski, M. Kokar, R. Waldinger and P. Kogut, Consistency Checking of
Semantic Web Ontologies. In Proceedings of the First International Semantic
Web Conference (ISWC)}, Lecture Notes in Computer Science, LNCS 2342,
Springer, pp. 454--459, 2002.

13 K. Baclawski, C. Matheus, M. Kokar, J. Letkowski and P. Kogut, Towards a
Symptom Ontology for Semantic Web Applications. In Proceedings of Third
International Semantic Web Conference, Hiroshima, Japan, pp. 650-667,
November, 2004.

14 Kendall Grant Clark, Bijan Parsia, Bryan Thompson, Bradley Bebee, A Semantic
Web Resource Protocol: XPointer and HTTP. In Proceedings of the Third
International Semantic Web Conference, Hiroshima, Japan, pp. 564-575,
November 2004.

