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Abstract— Network destabilization is a critical tactic for 

disrupting organizations such as terrorist networks or organized 
crime networks. For any network, there are many possible tactics 
that could be used to destabilize it. For example, a set of nodes 
(people) could be removed or added. So could the links among the 
nodes. Even if we limit ourselves to node removal, there are issues 
which nodes to remove and when. Thus, an automated framework 
for the generation of the destabilization scenarios is useful, for 
example, in what-if scenario analysis and vulnerability analysis. 
We created 1024 randomly generated strategies and 1024 learning 
algorithm-based strategies for the destabilization of a sample 
terrorist network. The learning algorithm based strategies were 
more effective in reducing the performance of the network. 
Moreover, we analyzed the preference of the learning algorithm 
and discovered efficient tactics such as undermining the network 
first and isolating the knowledge sources of a network later. We 
believe that the presented method can be applied to other 
disciplines requiring a simulation and a what-if scenario 
generation involving network destabilization. 

I. INTRODUCTION 
Network destabilization is an important issue in 

counter-terrorism [9, 11], network centric warfare [10], 
computer network security [1], etc. Also, finding efficient 
tactics to attack a network is critical in network destabilization. 
For example, if one can destabilize a computer network 
successfully with limited hacking attempts, the hacker will 
have a greater chance to hide his traces in the network. In 
another example, if an agency can disrupt a terrorist network 
with less frequent strategic interventions, the agency will 
achieve its goal more efficiently. 

Not only the number of interventions, but also the efficiency 
of an intervention is critical. Commanders trying to destabilize 
a terrorist network often need an answer about whether or not 
capturing a terrorist will disrupt the performance and the plan 
of the network. Eliminating the threat directly causing the crisis 
may be able to mollify the situation, but it may emerge a more 
dispersed, noisier and more unpredictable terrorist network 
after removing a certain agent in the network. In other words, 
the isolation of agents will cause diverse effects on the network. 
Some of the effects might be preferable while others may cause 
unexpected and undesirable backlash. 

These difficulties with the attempts at network 
destabilization can be partially resolved by adopting several 
analysis methods [6]. Social network analysis has been used to 

identify key persons for a network. Its methods and measures 
capture the various aspects of a network and helps analysts 
understand the network and its characteristics. Multi-agent 
simulation provides an ability to replicate the emergent 
behavior of agents, and the behavior often gives insights into 
what will happen with a scenario or a hypothesis. However, 
these solutions are not complete enough to devise 
destabilization strategies and test them to a certain extent if they 
are used separately. Furthermore, given the vast size of the 
possible strategy choice space, there should be a mechanism to 
converge efficient strategies. 

In this paper, we integrated the methods from three different 
domains: social network analysis, multi-agent simulation and 
machine learning. We develop destabilization strategies with a 
machine learning algorithm using the analysis measures of 
social network analysis, and we test the efficiency of the 
strategies with a multi-agent simulation. With the proposed 
method, we expect to see that the learning algorithm based 
strategies are more efficient in destabilizing a network. 
Furthermore, the whole procedure requires no human 
intervention except the input of the target network, so we can 
apply the method to any network structured organizations. 

II. PREVIOUS RESEARCH 
The concept and the importance of network destabilization 

are well documented in Networks and Netwars [2]. Current 
terrorist or criminal groups are actually leaderless although the 
members of the groups are able to assemble rapidly and operate 
as a well-functioning organization. Arquilla and Ronfeldt 
examined many different netwars ranging from social activist 
groups to violent terrorist groups. They found five major 
aspects of these groups, technological, social, narrative, 
organizational and doctrinal, of these networked organizations 
and netwars against them in the analysis. Particularly, the 
discussion of the importance of social basis for cooperation 
among the network members is interesting because our analysis 
fundamentally depends on the importance of the social 
structures. They argued that a network’s effectiveness increases 
when it has built mutual trust and identity based on strong 
social ties. In other words, weakening the social ties is the start 
to undermine the terrorist or criminal networks. In addition, 
they claim the importance of network structure recognition and 
the methods for the network analysis, which brings in social 
network analysis and other cutting edge methods. We think that 
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the manuscript described the demand for network 
destabilization and the possible research efforts to analyze this 
new area.  

The paper that directly motivated this research is 
Destabilizing Networks [4]. It discusses the capability of 
current tools and the difficulties of the destabilization problem. 
The current tools developed in social network analysis are 
introduced. The tools consisted of various network measures, 
such as centralities, and statistical analysis programs, like 
UCINET, for the measures. Furthermore, it introduces methods 
for comparing network structures and finding patterns from the 
changes. This pattern recognition technique is helpful for 
identifying missing links and nodes, network build mechanism, 
etc, which are fundamental in the vulnerability analysis of 
network structures. Additionally, this paper proposes a possible 
support from multi-agent simulation. It presents a set of 
examples, like analyzing network destabilization, information 
diffusion, bioterrorism attack, assisted by multi-agent 
simulation. They also mention the difficulties in the research of 
destabilization. The difficulties mostly live in the nature of 
networked organization, distributed resource and knowledge 
and ever-changing network shapes and internal dynamic. 
Carley et al claims that these difficulties can be overcome by 
sharpening the current tools. For example, expanding social 
network analysis to dynamic network analysis including not 
only agents but also whole and changing ingredients of a 
networked organization is an important to capture the changes 
of a network, and multi-agent communication simulation 
supported by network analysis will capture the evolution of the 
dynamically changing networks. This paper partially 
implemented the suggested elements of these possible 
improvements and the current cutting edges in the research 
method.  

There has been a number of practical research projects 
addressing network destabilization. Among them, the project 
similar to this paper is Netwatch [16]. In Netwatch, there are 
two teams, red team and blue team, and they try to execute 
assigned tasks by gathering necessary knowledge and resource 
and to come up with a network structure emerged from a set of 
signal intelligence respectively. Also, the secondary object of 
the blue team is destabilizing or decreasing the performance of 
the red team, which perfectly corresponds to our research goal. 
However, the destabilization tactics of Netwatch is too simple 
to represent the real world. The author assumes four tactics: no 
attack, isolating the member of the red team, isolating the 
member with the highest degree centrality and isolating the 
member with the highest cognitive load. In this tactics, there are 
no multiple isolations and no dynamic changes in the isolations 
though we often isolate a set of agents and the removal often 
causes the structural changes of the networks. Therefore, we 
inherit the fundamental methods of the experiment, such as use 
of social network analysis, multi-agent simulation, concept of 
isolation, etc. Nevertheless, we expand the tactic determination 
by including a machine learning aspect in the strategy 
generation and increasing the number of isolated agents in a 
network sequentially.  

Truly, the isolation of multiple agents, not a single agent, 
will change the fundamental of the network destabilization 
tactic because of the lock-in situations of action. First, network 
healing effect prohibits a static tactic of isolation. According to 
Carley [6], when a network gets damage by missing links or 
nodes, its nodes interact with each other and create alternative 
ways of communication and cooperation. Thus, single isolation 
does impact the performance of the network, but not significant 
enough to dismantle the network. The multiple isolations 
should take the network healing into account to maximize their 
effect. Second, a static tactic may fall into the escalation of 
commitment to a course of action [3]. If we stick to a single 
plan such as isolating agents with exclusive knowledge, we 
may only get a growing number of agents to isolate as the 
agents interact more and diffuse their information throughout 
the network. Therefore, we have to balance the various tactics 
like destabilizing the interaction of agents and cutting-off the 
source of information, etc. The difference between the single 
agent isolation and the multiple isolations bring in more 
complex isolation case generator and evaluation criteria, and 
we implement that in this research. 

III. METHOD 
We devised a set of approaches to achieve our research 

objective, creating a sequence of node isolations to destabilize a 
network. First, we use Near-Term Analysis and Dynet as a tool 
to test our isolations. Second, we setup three evaluation criteria 
to assess the result of the isolations. These evaluation criteria 
show whether and how much a network is destabilized. Finally, 
we introduce a set of procedures to create an isolation sequence 
that results in the sub-optimal destabilization of a network. 

A. Near-Term Analysis and Dynet 
In this paper, we hypothesize that the removal of nodes from 

a network can induce a destabilization of a network function. 
Particularly, the target network will be a social network of 
agents, either humans or computer nodes, which can diffuse 
knowledge pieces to the other agents in the network. Also, 
destabilization means the state of a network that cannot diffuse 
knowledge anymore or can diffuse it in low efficiency. 
Therefore, testing the efficiency of knowledge diffusion should 
be done for each isolation sequence. To perform such a test, 
there have been two distinct methods: social experiments with 
human participants and multi-agent simulations. We chose to 
use the multi-agent simulation approach because of its low cost, 
short experiment time and easiness of performance recording. 

For that reason, we used Near-Term Analysis and Dynet in 
our research. Dynet [7] is a multi-agent network simulation that 
imitates the knowledge diffusion among networked agents. It 
assumes that agents in a network have assigned tasks and they 
try to interact with other agents to gather all the necessary 
knowledge pieces to perform their tasks. Because it is a discrete 
event simulation, we can measure agents’ degree of knowledge 
diffusion at a certain simulated time-point. Furthermore, Dynet 
supports a function that can isolate a set of agents at a 
designated time, which fits well in our research scenario. 



 

Near-Term Analysis [12] is a wrapping function, i.e. a GUI 
front-end and callable from ORA [13], for Dynet. Though 
Dynet provides most of the needed functions for our analysis, 
we still have to calculate the aggregated output performance 
across agents in a network and to control the parameters, such 
as the replication number of a simulation, the input of isolation 
information to Dynet, etc. Therefore, we use the combination of 
Near-Term Analysis and Dynet to test our isolation scenarios 
and retrieve the consequence of the scenarios from simulations. 
The details about Near-Term Analysis and Dynet can be found 
in [12].  

B. Evaluation of an isolation sequence 
As we discussed in the previous section, we defined the 

destabilization of a network as the state of network that cannot 
diffuse knowledge or can do so with very low efficiency. Also, 
our test-bed provides a performance measure, knowledge 
diffusion [5, 12], over the course of a simulation. Thus, our 
evaluation of an isolation sequence depends on the movement 
of the knowledge diffusion. Therefore, firstly, we can use 
knowledge diffusion rates at the end time of simulations as a 
score for the isolation strategies. This is a number showing how 
much a network can diffuse knowledge across the structure. 
For the interpretation of the score, the lower rate of a strategy 
demonstrates the superiority of the strategy compared to others 
with higher rates.  

Also, we setup states of a network based on its information 
diffusion efficiency and used as another evaluation score for 
isolation sequences. Specifically, the following shows three 
possible results, also described in Figure 1, after a single 
isolation happened. 

 
1) Suppression: Suppression in this context stands for the 

decrement of the growth rate in the diffusion measure 
compared to the non-isolation case. In other words, the 
knowledge diffusion is increasing compared to the scenario’s 
own previous rate, but the increment is less than that of the 
non-isolation case.  

2) Damage: Damage implies that the knowledge diffusion is 
decreased compared to the rate of a previous time-point. 

However, the change in diffusion may not be sustained. If there 
is no isolation, the knowledge diffusion always increases or 
stays at the same level. Thus, the decrement of the diffusion 
rate always implies that Suppression is happening. Even though 
there is Suppression, it does not necessarily cause the 
decrement of the diffusion because a network can still develop 
the diffusion rate limitedly. Therefore, this is worse than 
Suppression. 

3) Break: Break means that the amount of knowledge 
diffusion has dropped and has remained low for a sustained 
number of time periods. Even the non-isolation case often stops 
the increase of the knowledge diffusion after a certain amount 
of time-points, but there is no damage in such a case. On the 
other hand, there are cases that show large damage in the rate 
and the rate never grows. We regard this particular case as 
Break state of a network. 

 
Though we defined the states after a single isolation, we will 

add the happenings of each type of the above events and use the 
sums to evaluate isolation sequences. If the happenings of the 
events are frequent in a simulation of a sequence, it shows the 

TABLE I 
THE USED NETWORK MEASURES FOR THE LEARNING ALGORITHM, THESE 

MEASURES AND THE ISOLATION TIMING ARE THE INPUT FEATURES FOR THE 
TRAINING 

 Used measures 

Network 
measure 
(27 
measures) 

knowledge Task Completion, knowledge Under Supply, 
overall Task Completion, performance As Accuracy, 
average Distance, average Speed, betweenness 
Centralization, closeness Centralization, clustering 
Coefficient, communicative Need, connectedness, density, 
diameter, efficiency, fragmentation, global Efficiency, 
hierarchy, in Degree Centralization, lateral Edge Count, 
minimum Speed, network Levels, out Degree Centralization, 
reciprocal Edge Count, sequential Edge Count, span Of 
Control, strong Component Count, weak Component Count 

Node 
measure 
(11 
measures) 

Cognitive demand, total degree centrality, clique count, row 
degree centrality, eigen vector centrality, betweenness 
centrality, high betweenness and low degree, task 
exclusivity, knowledge exclusivity, resource exclusivity, 
workload 

 

 
Fig. 1.  three events of destabilization, event occurrences during a simulation are counted for each case and used for the evaluation of strategies. Not only the event 
counts, but also the end time gap between the baseline and a strategy is also considered.



 

sequence is inducing many destabilization events of the 
network. 

C. Generation of an isolation sequence 
The test network, which we will introduce in the next 

section, has only 16 agents. For this network, we will isolate ten 
agents out of the sixteen agents from simulation time 2 to 20. 
Each isolation event will have two gaps of time-points between 
the previous and the next isolations. However, the number of 
possible isolation sequences, whose size is ten, is P(16,10) 
(=5765760). Because there are too many possible isolation 
sequences, we will use a machine learning approach to create a 
sub-optimal sequence. The diagram in Figure 2 explains the 
procedures for the creation. 

First, we created 1024 sample isolation sequences by 
choosing 10 agents to isolate randomly. These sample isolation 
sequences were tested by Dynet, a multi-agent simulation, and 
produced 10*1024 isolation results. Then, we divided the 

results into two classes, the results displaying Suppression state 
and the results showing no Suppression state, which includes 
Damage or Break state. After this sub-procedure, we obtained 
10*1024 training cases with ‘1’ or ‘0’ output state, in which ‘1’ 
stands for Suppression and vice versa. 

Second, we trained a SVM Regression algorithm developed 
by Smola and Scholkopf [14,15]. We fed the learning algorithm 
input features such as target node measures, network measures 
before the isolation and isolation timing (listed in Table 1). 
Further information, i.e. formula, description and 
interpretation, of the measures can be found in [13], and the 
measure calculation is done by Organization Risk Analyzer 
developed by them. Of course, we marked the input features 
with an output state that is described above. Afterward, we 
utilized the marked training set to optimize the SVM 
Regression algorithm. Additionally, we used RBF kernel for 
the SVM with a parameter, 0.01.  

Third, we started creating the isolation sequence by utilizing 

 
Fig. 2.  a simple diagram of the method, the training set is collected based on the simulation result of random strategies, a machine learning algorithm is trained 
with the training set, and the selected strategies are composed based on the learning algorithm 

 
Fig. 3.  the target network for destabilization in this work, the terrorist network related to the US Embassy bombing in Tanzania 



 

the optimized machine learning algorithm. Because the 
learning algorithm is a non-linear regression, it calculates the 
likelihood of Suppression happening for a test instance 
consisting of node measures, network measures and isolation 
timing. Therefore, we populated test instances by using every 
available agent in the network at a certain time-point. With the 
populated test instances, the regression algorithm provided 
estimates for the likelihoods for the instances and we chose the 
two instances with the two highest likelihoods. The chosen two 
instances indicate two agents to isolate, and we created two 
possible choices at the time-point. Surely, the chosen agents 
will be removed from a network for the next iteration. By 
repeating this iteration ten times, we got 210 (=1024) sequences 
generated by the machine learning algorithm. 

Finally, we had 1024 randomly generated scenarios and 
1024 machine learning produced sequences. We calculated 
their end-time knowledge diffusion rate, the number of 
Suppression events, Damage events and Break events. Also, we 
searched for the best isolation sequence for both generation 
schemes and drew their knowledge diffusion changes over the 
course of the simulation periods. 

IV. RESULT 
The dataset used to test the introduced method is an 

organizational structure of a terrorist network from the U.S. 
Embassy bombing incident in Tanzania [8]. The network 
consists of 16 agents, 4 knowledge pieces, 4 resources and 5 
tasks, and it is relatively small. We believe that the members of 
the network tried to complete the assigned tasks by 
communicating with other members to obtain their necessary 
knowledge and resource. With this network, we created 
scenarios removing agents one by one and tried to destabilize 
the network in terms of making the network unable to diffuse 
the knowledge. Figure 3 is the visualization of the network. 

A. Performance of isolation strategies generated by a 
machine learning algorithm 
First, it is important to see how much the strategies from the 

machine learning algorithm are better than the randomly 
generated strategies. As described in the method section, we 

created 1024 random scenarios and 1024 selected scenarios and 
determined three destabilization events and the end-time 
knowledge to consider as evaluation criteria for the strategies. 
The Dynet simulation results with both groups of strategies are 
shown in Figure 4. The numbers of three destabilization events, 
suppression, damage and break, of the selected scenarios 
exceeds those of the random scenarios, which demonstrates 
that the selected scenarios created by the learning algorithm 
caused the damaging events more often. Furthermore, the 
average knowledge diffusion of the selected strategies is less 
than the average of the random scenarios. This implies that the 
selected strategies were successful in terms of reducing the 
knowledge diffusion rate by effectively isolating agents from 
the network. 

Besides of the overall results, Figure 5 shows the diffusion 
changes over the simulated time periods. First, the upper graph 
of Figure 5 represents the average knowledge diffusion for 
each simulated time-point. In the graph, we noticed that the 
non-isolation case does better than the cases with isolations and 
the difference between the non-isolation case and the random 
isolation cases is much smaller than that between the 
non-isolation case and the selected cases. This result means that 
the random isolation would not be able to impact the diffusion 
rate significantly compared to the learning algorithm-based 
isolations.  

Moreover, the lower graph of Figure 5 shows the best 
destabilization strategies of the two groups and the 
non-isolation case. The best selected strategy completely broke 
the diffusion among the agents, so the network could not 
overcome the isolations after the time-point 20 when the tenth 
and last isolation occurred. On the other hand, the best 
destabilization of the random strategy did reduce the 
knowledge diffusion rate, but it did not break the diffusion 
completely. From the movement of the best destabilization of 
the selected case, we see that the strategy prevented further 
spreading of the knowledge set in the network first and isolated 
the agents who already possessed the diffused knowledge.  

B. Target selection of the machine learning approach 
The above results demonstrate the capability of the machine 
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Fig. 4.  the simulation result of the random strategy set and the selected set. The selected set was able to induce more destabilization events and reduce the end
time knowledge diffusion. 



 

learning approach for an effective isolation strategy generation. 
Then, the following question would be how the learning 
algorithm decides the target and which agent the learning 
algorithm isolates. The learning algorithm takes inputs from the 
network status and the node position when the isolation occurs. 
The status and the position are represented by a set of network 
measures calculated at the network level and the node level. 
Also, the position of a specific node is important in deciding 
who to isolate because the overall shape of the network, the 
topology, is the same for all of the nodes. Node position is the 
feature distinguishing each agent. Figure 6 is a group of graphs 
showing the changes of network position measures of 10 
consecutive isolations. In other words, each measure represents 
an aspect of the node’s position Conspicuously, the measures 
of the learning algorithm show an average tendency over the 

course of the simulations. Whereas the random method chooses 
the agents without any tendencies, the learning algorithm 
selects different agents at different times. At the beginning of 
the simulation, the learning algorithm isolates the agents with 
high total degree centrality, which means the isolation removes 
comparatively large numbers of links from the network. This 
trend lasts for the first three isolations. After that, the learning 
algorithm starts isolating connecting nodes that have high 
betweenness centrality and low degree centrality. As their 
measure name shows, the connecting nodes are the agents 
positioning themselves at the bridging points among groups in 
the network with a small number of links. As a result of 
isolating the two types of agents sequentially, we get the 
optimal destabilization result. Also, it should be noted that the 
agents with exclusive knowledge pieces are isolated in the 
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Fig. 5.  (Upper) Three lines, baseline, the average of 1024 random sequences and the average of 1024 selected strategies, of average knowledge diffusion over 
time (Lower) same three lines but showing the best destabilization of the random and the selected sets. 



 

middle of the sequence. This means that the isolation of the 
knowledge source may not be the first task for preventing the 
spread of the knowledge. Rather than isolating the knowledge 
source agents, the learning algorithm prefers to disconnect the 
network first and deal with the knowledge sources after the first 
wave of isolations. 

V. CONCLUSION 
Network destabilization is one of the most important issues 

in counter terrorism, organized crime network, etc. If we are 
able to disrupt the information flow among the terrorists in a 
network, we can diminish their performance. In this paper, we 
assumed that an isolation of an agent is one of the ways to 
disrupt the network, and we researched how to devise an 
automated method for generating optimal destabilization 
strategies based on the given network structure. We utilized 
mainly three theories from different disciplines. First, we used 
a multi-agent simulation, Dynet, to replicate the 
communication among the agents in the network. Second, we 
utilized a machine learning algorithm, Support Vector 
Machine, to learn the most devastating isolation case and to 
generate the chain of the isolations. Finally, we used social 
network analysis measures, such as centrality measures, to 
numerate the network status and the agent positions on the 

network and to feed the information to the learning algorithm.  
We setup 1024 randomly created scenarios and 1024 

learning algorithm-based strategies. Also, we developed three 
destabilization events and one numeric score: Suppression, 
Damage, Break, and the end-time knowledge diffusion rate. 
Then, we tested the strategies with the simulation and retrieved 
the evaluation result. The result presents that the learning based 
strategies exceed random strategies in all of the four evaluation 
criteria. The trained machine learning algorithm was capable of 
creating scenarios that destabilize a network better by inducing 
the destabilization events more often and reducing the end time 
knowledge diffusion rate compared to the random scenarios. 
Furthermore, we analyze the isolation target choice tendencies 
of the learning algorithm. The learning algorithm tends to 
isolate high total degree centrality nodes and then connecting 
nodes. The isolation of knowledge sources happened after three 
or four isolations. In other words, the learning algorithm 
removed most of the links in the network first and the 
knowledge later from the network. By doing so, the learning 
algorithm minimized the spread of the knowledge pieces across 
the network. At the same time, the learning algorithm was 
capable of isolating a limited number of nodes with already 
spread knowledge pieces after making the network unable to 
diffuse the knowledge.  

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

Timing

m
ea

su
re

 d
eg

re
e

cognitive demand

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Timing

m
ea

su
re

 d
eg

re
e

total degree centrality

0 5 10 15 20
0

0.5

1

1.5

Timing

m
ea

su
re

 d
eg

re
e

clique count

0 5 10 15 20

0.35

0.4

0.45

0.5

0.55

0.6

Timing

m
ea

su
re

 d
eg

re
e

row degree centrality-knowledge

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Timing

m
ea

su
re

 d
eg

re
e

row degree centrality-resource

0 5 10 15 20

0.35

0.4

0.45

0.5

0.55

0.6

Timing

m
ea

su
re

 d
eg

re
e

eigenvector centrality

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Timing

m
ea

su
re

 d
eg

re
e

betweenness centrality

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Timing

m
ea

su
re

 d
eg

re
e

high betweenness and low degree

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Timing

m
ea

su
re

 d
eg

re
e

task exclusivity

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Timing

m
ea

su
re

 d
eg

re
e

knowledge exclusivity

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Timing

m
ea

su
re

 d
eg

re
e

resource exclusivity

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Timing
m

ea
su

re
 d

eg
re

e

workload

Fig. 6.  the average measure changes of the selected nodes over time. a measure level of a time-point represents the preference of the learning algorithm when it 
tries to isolate a node at the time. 



 

This research method does not have to be limited to a 
destabilization method of a terrorist network. It can be applied 
to the destabilization of a network centric warfare system, a 
government structure, a computer network, etc. Because there 
is no human intervention in creating the strategies, the worst 
case scenario generation can be done only with an input of an 
organization structure. Then, the learning algorithm will search 
the domain specific parameters by repeating simulations. On 
the other hand, the usage of the simulation should be validated 
in the used domains to gain credibility. Dynet has been 
validated and utilized to test the destabilization of terrorist 
networks, military command and control, corporate 
management, etc. 

This multi-disciplinary approach can be improved by 
enhancing each element in the method. The learning algorithm 
is not examined for its own test set accuracy, and very little 
work is done to enhance its training accuracy. The possible 
parameters and the applicable kernel of the learning algorithm 
are vast, which give us room for improvement. In addition, we 
should develop new social network measures that can capture 
the salient features of network changes. The robustness of a 
network measure can contribute to the stable input for the 
learning algorithm when the network is dynamically changing. 
Lastly, the multi-agent simulation, Dynet, should be validated 
in many different disciplines and adopt more realistic 
experiment functions to expand the usage of this approach. Any 
of these improvements increase the usability and the accuracy 
of the proposed method. 

This paper proposed an automated method of network 
destabilization strategies and tested the generated strategies 
with a multi agent simulation. The test result shows that the 
generated strategies are better than randomly generated 
strategies in terms of prohibiting information flow in a network. 
This method can be applied to any domain involving an 
organization and information diffusion. 
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