Supporting Adaptive C2 Structures in Time-critical Environments

Darby E. Grande, Aptima, Inc.
Emily M. Stelzer, Aptima, Inc.
John D. Lee, University of Iowa
Joshua D. Hoffman, University of Iowa
Michael Patterson, Aptima, Inc.
Sherman Tyler, Aptima, Inc.
Georgiy Levchuk, Aptima, Inc.

13th ICCRTS-2008
“Recent military experiences with AVs [Autonomous Vehicles] have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations.”

- NRC Committee on Autonomous Vehicles in Support of Naval Operations 2005

How do we support teams of AV operators, each controlling a team of AVs?

- Can we balance workload across the team of operators?
 - Initial Planning
 - Dynamic Re-planning
- Can we adjust quickly if one operator suddenly goes offline?
Develop integrated human interface and automation technologies to enable small co-located or distributed groups of operators to manage multiple air, undersea, & surface vehicle systems

- User environment design
- Tools to support collaborative decision making
- Automated mission planning and re-planning
- Integration with local AV planning systems
Our Approach

- Integration of multi-disciplinary contributions
 - Cognitive Work Analysis (CWA) for information requirements definition and understanding
 - Team design optimization for planning and replanning
 - Innovative UI concepts to support information and collaboration needs

- Flexible consideration of evolving operator needs as AV technology capabilities and requirements evolve
Objective: Extend CWA products to collaborative work domain and rich organizational structure

Apply CWA techniques to capture:
- Information requirements by role
- Information tasking and handoff procedures
Extending the Abstraction Hierarchy

- CWA identifies information and constraints that govern all actors and actions in the domain
- Use of information across roles must be mapped to drive design

<table>
<thead>
<tr>
<th>Macros (Abstract)</th>
<th>Whole</th>
<th>Subsystem</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Use of information across roles must be mapped to drive design

<table>
<thead>
<tr>
<th>Roles</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV Control and Navigation</td>
<td>Planning, mission monitoring</td>
</tr>
<tr>
<td>Mission Operator</td>
<td></td>
</tr>
<tr>
<td>AV Manager</td>
<td>Objective completion</td>
</tr>
<tr>
<td>Knowledge Manager</td>
<td>Information management</td>
</tr>
<tr>
<td>Sea Combat Commander</td>
<td>Strategic objectives</td>
</tr>
</tbody>
</table>
Abstraction Hierarchy

Abstraction decomposition representation mapped to key roles and technologies
- Developed DL to represent control handoffs, information tasking
- Initiated when operator can no longer control an asset or complete task with their current resources
Use Case

- General Domain: Littoral Combat Ship
- Setting: Strait bordering Hostile Nation
- Missions:
 - Intercept Suspicious Vessels with likely Contraband; Disable
 - Clear Strait of Threats so Carrier can enter
- Players:
 - LCSs (4) – Each with Mission Manager (UV Manager)
 - LCS1 & LCS3: Marine Interception Ops Pkg – VTUAV (2); USV (2)
 - LCS2 & LCS4: Surface Warfare/Area Clearing Pkg – RMV; BPAUV; USV
 - Carrier – Overall Command = Sea Combat Commander - UCAV
- Events:
 - Two Targets of Interest (TOI) enter strait
 - One turns out to be hostile, one neutral
 - Hostile TOI destroys nearby VTUAV; disables LCS1
 - Assets reallocated by Team Planner so can complete two primary missions
Socio-technical system design and analysis at Aptima

- **Tasks**
 - must be accomplished during mission (mission tasks, processes, actions, targets)

- **Resources**
 - needed to accomplish those tasks (e.g., information, raw materials, equipment, physical assets & weapons)

- **Decision-makers (DM)**
 - human decision makers who will constitute the team
Team design challenges
- AV team operations are still to be realized; capacity for flexibility of parameters and assumptions is important
- Adaptive, mid-mission planning requires consideration of the disruption caused by proposed plan changes
- Decision maker with high-level view should be able to interact with the planner

Major function requirements:
- Initial Mission Planning:
 UV allocation, C2 planning
- Mission Re-Planning:
 Change Plan with new missions, Unexpected events

Initial areas of focus
- Asset-Task Allocation
- Decision maker – Asset Assignment
Asset – Task Allocation and Scheduling

– Minimize Mission Completion Time subject to capability and precedence constraints
– Multidimensional Dynamic List Scheduling (MDLS) heuristic algorithm to solve the IP in two steps:
 ▪ Prioritize tasks according to precedence constraints and deadlines using the Critical Path Method (future opportunity to add inter-task information flow requirements here)
 ▪ Assign assets to the tasks so as to
 – Minimize task completion time and
 – Minimize inefficiency in asset-capability assignments

Decision maker – Asset Assignment

– Minimize the Maximum Workload Disparity (workload imbalance) across the decision makers
 ▪ Considers the burden of managing assets as well as executing tasks
– Penalty function added to constrain the disruption caused by the new plan
 ▪ Enabled by maintaining a “previous assignment” at all times so the CTP knows the current state when planning the future
– Current implementation is a heuristic evolutionary algorithm
Integration: What we learned

- Guidance from the CWA to the team planner
 - Granularity of information required as output from the planner
 - Sea Combat Commander holds the high-level functional purposes:
 - Asset preservation
 - Secrecy of assets
 - Intelligence gathering
 - Minimal interference

- Guidance from the CWA to the User Interface
- Alignment of team planning functionality with information and communication requirements analysis