A process for placing the human at the centre of the constructive simulation

D.F. Dean B.Eng MSc C.Eng MIEE
Principal Consultant

Dstl Land Battlespace Systems
Portsdown West
Portsdown Hill Road
Fareham
Hants
PO17 6AD
dfdean@dstl.gov.uk
Agenda

- Background
- The Development Process
- Architectural Description
- The Combat ID Case Study
- Next Steps
Agenda

• Background
• The Development Process
• Architectural Description
• The Combat ID Case Study
• Next Steps
• Dstl are the centre of scientific excellence for the UK MOD.
  – “To create the winning edge for UK Forces and Government through the best use of science and technology”

• Provide support to:
  – Procurement Decisions
  – Defence Policy Making
  – Operations

• Deliver defence research technical services, track global technological developments.
Background

• A customer wanted to assess the Balance of Investment between different Combat ID pillars:
  – Target Identification, Situational Awareness and Tactics, Techniques and Procedures.

• There were no existing models, wargames, simulations or analysis tools which were capable of informing this decision.

• A novel analysis approach was developed to enable the comparison of technological and human solutions.
  – The process used is applicable to a wide variety of different problems involving the modelling of novel human factors representations.

• This presentation describes the process an associated architecture and case study which can be used as a template for generating new human factors representations.
Measures of Combat ID Operational Effectiveness

- Level of Attrition (number of blue casualties)
- Frequency of fratricide Incidents (and collateral damage)
- Operational Tempo
- Political Impact (potential for national and international incidents and repercussions)

Combat ID process Outputs

- Probability of ID (PID)
- Time to ID
- Range at ID

Combat ID process

- Observe
- Orient
- Decide
- Act

Human Factors

Goals
Training and Experience
Individual Differences

Recognition Primed Decision Making

Outcome feedback

ROEs

External Input

Projection
Comprehension
Perception

Combat ID Pillars

- Situational Awareness
- Target Identification
- Tactics Techniques and Procedures
The Three Pillars of Combat ID

Although defined by UK doctrine, they are not mutually exclusive and therefore are less than ideal for analysis purposes.

**Situational Awareness**
Anything that helps a decision maker develop their awareness of the battlespace. However often used to refer to tools that provide a tactical picture of some sort, also real time imagery.

**Target Identification**
Anything that provides information on identity. This includes uniforms, panels and markings, and IFF systems. Also includes sensors and electro-optics.

**Tactics Techniques and Procedures**
Concepts and doctrine, ROEs and other processes. Often used to refer to training options.
Agenda

• Background
• The Development Process
• Architectural Description
• The Combat ID Case Study
• Next Steps
Agenda

• Background
• The Development Process
• Architectural Description
• The Combat ID Case Study
• Next Steps
Architectural Description

- The following slides provide a high level set of categories which can be used to describe a particular representation in terms of use, function, detail, coverage and quality.

- They are complementary to cognitive architectures, and intended to promote correct use and reuse.
Type of Question

Task
Management, Surveillance, Warfighting

Balance of Investment

Human Performance

Failure Mode

Operational Performance

Environment
Location, Type of operation

Status/Configuration
Equipment, Team, Training Levels

Conditions
Fatigue, Fear, Level of comfort
Type of implementation

- Constructive Simulations
- SEs and Virtual Environments
- Analysis Tools
- Higher level gaming
- Live Exercises and Historical Analysis

Derivation ➔ Experimentation ➔ Evidence ➔ Validation
Human Factors Characteristic

- Survival, Values and Culture
- Cognitive Processes
- Trait Characteristics
- State Characteristics
- Physiological Characteristics
Constraints and Quality

What does it do?

How well does it do it?

What can’t it do?

What has it done?

Where did it come from?

Where is it going?

Validation status

Validation history
Agenda

• Background
• The Development Process
• Architectural Description
• The Combat ID Case Study
• Next Steps
The Combat ID Case Study

• The following slides describe the Integrative Combat Identification Entity Relationship (INCIDER) model.
  – Initially, the INCIDER Conceptual Model captured information about parameters and relationships.
  – This was developed into the INCIDER analysis tool.
  – An ongoing SE experimentation programme was used to validate and refine the representations.
  – A distillation of the INCIDER model was then generated in Net logo.
  – This representation is being refined, and has been used to de-risk development within the UK Close Action Environment (CAEn).
The Combat ID process
The INCIDER Model

INCIDER Relationships Model

Physical Domain
- Sensor characteristics
- Target characteristics
- Environment

Human Domain
- Pre-set characteristics
- Variable characteristics
- Physiology
- Expectation

Operational Domain
- Scenario complexity
- Context and Rules of Engagement
- Possible target options

Specific Scenario:
Provides settings for INCIDER model

INCIDER Encounter Model

INCIDER Outputs:
- P(ID)
- Range at ID
- Time to ID
Agent Based Model representation

• A simple model has been developed by TNO.
  – Based on the Net Logo environment,
  – This has been used as a development test bed.
• The model generates a random ground truth and preconception.
  – To provide a large number of scenarios.
• An agent then explores, and makes ID decisions, updating local and global SA.
• Variations of parameters are used as data farming variables.
  – Based on the approach developed by the SEED centre in the Naval Postgraduate School.
Preconception and Ground Truth
Information Acceptance Curves

Preconception level

Filtering applied to new Information

- Reject Band
- Increasing Bias
- Maximum
- Minimum

Max

© Dstl 2001

16 July 2008

Dstl is part of the Ministry of Defence
Global and Local SA

- Ground Truth
- Global SA
- Local SA
- Local SA grid has granularity of ground truth grid
- Interaction between local and global SA
- Global SA cell size (nr of Ground Truth cells)

Local SA Moves with position of identifying agent in the middle

© Dstl 2001

16 July 2008

Dstl is part of the Ministry of Defence
Important Results

• Innovative SA representations have been developed which can be applied to a range of Network Enabled Capability (NEC) investigations.

• The Data Farming approach has proved to be very a very powerful technique to support application development.

• The Net Logo model will soon be in a state which enables it to perform a range of simple analysis tasks.

• Model concepts have been exploited within the Close Action Environment (CAEn).
Agenda

- Background
- The Development Process
- Architectural Description
- The Combat ID Case Study
- Next Steps
Next Steps

• The Net Logo tool is approaching a limit of diminishing returns.
  – We don’t want to re-invent the wheel in taking it further.

• The next step will be to take what we have learned, and incorporate it within a more mature Agent Based Model.
  – With terrain, engagement and tactical decision making representations.
  – An additional objective is to develop the INCIDER representations within cognitive architectures such as ACT-R and Soar.

• Next HF developments will investigate team and group decision making.
Questions?