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Abstract 
In C2 situations, decision makers would love having a crystal ball that describes future events not 
under their control, and how these events would affect each of the courses of action (COAs) 
being considered.  Further, decision makers would appreciate knowing the potential cost of each 
COA—e.g, via a metric based on the numbers of resources used and the damage, injury, and 
deaths that may result.  While crystal ball technology remains as elusive as ever, Lempert et al. 
and Chandrasekaran have developed general methods for identifying robust COAs by using 
simulation models that determine the plausible consequences of each COA under a wide range of 
possible futures.  Because the simulation models must be run many times for each of the 
(possibly many) COAs, these techniques are computationally intensive, sometimes taking hours, 
days or weeks.  Since tactical commanders need to make decisions in minutes or seconds, we 
have been manipulating the models underlying two different simulations to determine what 
computational shortcuts can be made that do not compromise the decision quality of the 
recommendations.  This paper presents results from our analytical and empirical investigations 
that are facilitating development of a real-time, tactical decision-support system for emergency 
preparedness and crisis response. 
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1.  Introduction 

The information needed to attain situation awareness consists of facts about the environment, 
which Hall et al. (2007) call the situation space.  Yet, truly aiding decision makers requires 
providing them with more than situational facts.  Decision makers must choose among the 
options for action that are at their disposal.  This additional view of the environment is termed 
the decision space (Hall et al., 2007).  Decision makers must be able to compare these options in 
the decision space and choose among them, given an analysis of the facts of the situation, which 
maps from the facts to the consequences of each option.  For each option there is a distribution of 
possible consequences.  Each distribution is a function of the uncertainty of the elements in the 
decision situation (how big is the fire) and the uncertainty regarding executing the course of 
action defined in the decision option (what percent of fire trucks will get to the scene and when).  

An optimal plan is one that will return the highest expected return on investment.  However, 
under deep uncertainty (Lempert et. al. 2006), where situation and execution uncertainty are 
irreducible, optimal strategies lose their prescriptive value if they are sensitive to these 
uncertainties.  That is, selecting an optimal strategy is problematic when there are multiple 
plausible futures.  

Consider a very simple example.  Suppose three is the optimal number of fire trucks to send to a 
medium-sized fire under calm wind conditions, but if conditions get windy, a higher number of 
trucks would be optimal.  If your weather model predicts calm and windy conditions with equal 
probability, then what will be the optimal number of trucks?  One could expend a lot of effort 
trying to improve the modeling of the weather in order to determine the answer.  Furthermore, 
just how certain are you that the initial reported size of the fire is correct? 



Alternatively, Chandresekaran (2005) and Chandresekaran & Goldman (2007) note that for 
course of action planning under deep uncertainty one can shift from seeking optimality to 
seeking robustness.  In other words, one could look for the most robust line of approach that 
would likely be successful whether or not it will be windy.  

 
Figure 1: A decision space visualization 

Lempert, et al. (2006) describes a general simulation-based method for identifying robust 
strategies, a method they call robust decision making (RDM).  Using our simple example, one 
would translate sending different numbers of fire trucks into the parameters of a model.  Then for 
each option, one could explicitly systematically manipulate the other uncertainties of the model 
(e.g. weather).  The model would be executed for each combination of number of trucks sent and 
set of uncertainties to determine which option performs relatively well across the range of the 
plausible futures that the model projects.  This approach can also identify vulnerabilities of these 
options, showing under what plausible circumstance each does well or poorly.  In turn, this can 
suggest new options to try to better hedge against these vulnerabilities.  Ultimately, this approach 
enables decision makers to characterize the trade-offs involved in their decision space of 
different options.  

Figure 1 illustrates the results of applying this approach to a fire truck decision in an emergency 
response situation.  Each option for a number of fire trucks to send, which is listed along the 
horizontal axis of the graph, was analyzed in a simulation model.  The hyperspace of futures 
under a given option is summarized in Figure 1 as a box plot.  The box plot is used here merely 
for illustration, as a common visualization option that typical research subjects can be readily 
trained to read.  Of course, more complex decision spaces will require more domain-specific 
decision visualization methods.  Uncertainty around each value of this endogenous variable, such 
as the actual number of trucks that would arrive in time, was estimated and systematically varied 
across multiple executions of the model.  In addition, other exogenous variables that would not 
be under the control of a course of action, but would likely interact with it (like the wind in our 
simple example), were also systematically varied across these multiple executions of the model. 
The result was a hyperspace of combinations of different endogenous and exogenous variable 
values, which can be considered a hyperspace of plausible future situations.  Each of these 
situations can then be evaluated in terms of how much cost (in this case, the cost of immediate 
and future damage and injury) is generated by that situation.  The result of these evaluations for 
the hyperspace of futures under a given option can be summarized graphically. 



When the cost of each situation is mapped against each course of action, we get a two-
dimensional projection that allows us to compare robustness in the users’ decision space, as 
illustrated by the box plots in Figure 1.  In this case, across all of the plausible futures, sending 
one fire truck seems to result in not only a lower median cost (the line inside the box), but also a 
relatively small range between the cost of the worst cases and the cost of the best cases (the 
distance between the “whiskers”).  In other words, sending one fire truck seems to be the most 
robust decision option regarding the uncertainties inherent in the situation. 

This decision-space construction raises questions regarding the required precision and fidelity of 
complex simulations that actually are needed to support such robust decision spaces.  This is 
important because modeling an extensive set of possible future conditions can be 
computationally expensive.  In our work we have found it is not unusual to need millions of runs 
through a model, requiring days or weeks, to compute the consequences of the options for some 
decisions.  However, if we can avoid needless fidelity that does not substantially change the 
decision space, then we can save model development cost and computational time, which in turn 
will support more tactical decision-making.  Certainly, one such substantial change would be to 
cause a change in the rank order of the options due to changes in the estimated median costs or 
range of costs.  It could also be a change in the distance between options’ median costs or ranges. 
Finally, it could also mean a change in the situations that are source of each cost point. 

As part of a research program examining both mathematical and psychological effects, we are 
performing similar studies on very different models to determine whether we can derive general 
principles or guidelines for eliminating needless fidelity.  Furthermore, we aim to develop a 
methodology so that others can quickly determine the fidelity boundary conditions and 
breakpoints for their own models.  Once we determine reasonable fidelities for underlying 
models, we are running human-in-the-loop experiments to determine the effect on decision-
makers of providing this information.  And while we performed the work in the context of 
emergency response, we believe the principles will be applicable to other domains in which 
decision-making is of similar complexity and must take place on similar timescales, such as 
military command and control. 

2. Use Case 

Decision-making situations can be described in terms of “VUCAD” characteristics:  Volatility, 
Uncertainty, Complexity, Ambiguity and Delayed feedback (Streufert and Satish, 1997).  A fire 
in a large building is a good example of a difficult decision-making situation because it has 
challenges pertaining to all of these characteristics.  There is: 

 volatility regarding the size and location of the fire from one minute to the next,  

 uncertainty concerning the presence or absence of hazardous and/or accelerant 
substances,  

 complexity generated by the different alternatives for entering the building and 
approaching the fire,  

 ambiguity regarding the structural soundness of the building at any given moment as the 
fire attacks its load-bearing elements, and  

 delayed feedback to an incident commander located outside the building.   



Upon receiving the 911 call indicating a large structure fire, an initial set of resources are sent to 
the scene.  In accordance with the Incident Command System, the highest ranking responder 
takes responsibility as the Incident Commander (Bush, 2003).  In our example use case, Fire 
Chief Brown becomes Incident Commander (IC) and assesses the situation.  Chief Brown 
considers (Dunn, no year given): 

 Is the roof stable?  Can I cut a roof vent opening or will it collapse? 

 Do I have sufficient resources at the scene or should I call for reinforcements? 

 Do I have enough resources at the scene to attack the fire or should I order all firefighters 
to do search and rescue and let the building burn? 

 Should I give up the original burning building and protect adjoining structures with hose 
lines? 

Some other basic questions include (Ennis, 2008):  Is there a life hazard?  Is the fire spreading? 

In this example use case, the fire is already visible from the street through the blown out 
windows on the second floor.  Chef Brown does not have a lot of time to make decisions.  He 
considers how many resources he has at his disposal, the number of possible victims, the 
potential for property damage, and the likelihood of future events and their potential to draw on 
his resources.  Rather than having to mull over these criteria, he quickly enters into his hand-held 
PDA the latter three criteria (the PDA already knows how many resources are available back at 
the station house and at the locations of his mutual aid partners).  The resulting display, similar 
to Figure 1, appears within a few seconds and shows that the most robust approach is to request 
two additional ladder trucks. 

Chief Brown calls for the two ladder trucks and also decides to send a crew inside the building.  
As a result, Brown’s firefighters quickly subdue the fire and keeps it from spreading to the 
surrounding buildings. 

Our work aims to develop a command and control decision aid that is tactical in nature: one that 
can provide real-time support to decision-makers in high-stakes, time-sensitive situations.  We 
believe that robust decision-making techniques can help us develop these decision support aids. 

3. Work Program 

The robust decision making technique introduced at the beginning of this paper requires 
information generated by underlying models.  As previously noted, modeling an extensive set of 
possible future conditions can be computationally expensive.  But are all these runs really 
needed?  Must the model be run at a high level of fidelity and precision?  If the answers to these 
questions are “yes,” then this RDM approach is untenable for tactical decisions that must be 
made in seconds or minutes as opposed to days or weeks.  One purpose of this investigation was 
to determine whether the answers to these questions could be “no”: that high fidelity and 
precision is not always needed.   

Accordingly, we performed sensitivity analyses to determine points at which the COAs’ costs 
under a lower level of fidelity differed substantially from the costs of the same COAs under a 
higher level of fidelity.  By substantially, we mean that the ordering of the preferred COAs 
changed from one granularity level to another: which would mean that decision-makers could be 
led to make the wrong decision. 



We started with a model of emergency response called NeoCITIES, described in the next 
subsection.  But to determine whether the results can be generalized to models in other domains, 
we also examined models of pandemic influenza crisis management (described in section 3.2).    
Besides modeling different phenomena, the models are of different types (algorithmic/time-
stepped, and agent-based). 

Once we understood a tactical approach for modeling, we could begin to think about designing a 
decision aid and testing it with potential users.  Section 3.3 describes the human-in-the-loop 
testing done to date.  We end with our conclusions so far and the next steps for this work 
program. 

3.1 NeoCITIES Model Manipulation 

A first test case of this research was the model developed for the NeoCITIES scaled-world 
simulation (Jones et al., 2004).  In the words of the NeoCITIES developers: “NeoCITIES is an 
interactive computer program designed to display information pertaining to events and 
occurrences in a virtual city space, and then test team decision-making and resource allocation in 
situations of emergency crisis management” (McNeese et al., 2005, p. 591).  Small teams 
interact with NeoCITIES to assign police, fire/rescue, or hazardous materials assets in response 
to emerging and dynamic situations.  If team members fail to allocate appropriate resources to an 
emergency event, the magnitude of the event grows over time until a failure occurs, such as the 
building burning to the ground or the event timing out. 

In this work, sensitivity analyses were performed to determine the levels of fidelity at which the 
options’ apparent costs under a lower-fidelity model differed substantially from the costs of the 
same options using a higher-fidelity model.  The high fidelity NeoCities model of the growth of 
the magnitude of an event is time step-based and incremental: it depends upon the magnitude 
calculated for the previous time step t – 1 and the number of emergency resources (such as fire 
trucks) applied at that moment.  This means that the magnitude of an event at a given time t 
cannot be obtained without calculating all of the magnitudes at all of the previous times, which is 
very computationally intensive.  Two non-incremental equations were derived from the data 
generated by the incremental NeoCITIES escalation equation.  These lower-fidelity models are 
computationally simpler.  Moreover, being non-incremental, these equations can calculate the 
magnitude of an event for any time without calculating previous time steps, and therein reduce 
computational costs. 

Although neither of the lower fidelity models were representative of the incremental generating 
process, they still provided a high fidelity model of the behavior of the data, accounting for 87% 
and 96% of the variance.  Even so, there was a small but significant reduction in discrimination 
among the decision options with the non-incremental models.  This fact illustrates that, even 
when the behavior of a process can be adequately modeled, there still may be implication for 
supporting the decision maker.  The main effect for the low fidelity model to exaggerate cost, 
compared to medium or high fidelity, is significant but with a very small effect size (ηp

2 = .001).  
The interaction with the courses of action, however, revealed that the two non-incremental 
models provided less distinct differentiation between courses of action than the “ground-truth” of 
the original NeoCITIES formula.  

The precision with which the situation data was represented in these models was also 
manipulated.  This representation was manipulated along a number of dimensions, the first of 
which is how accurately the initial magnitude of the event is sampled.  Each simulated event’s 



initial magnitude was selected from a normal distribution for four initial magnitude ranges, one 
for each dataset: 1 to 2, 2.5 to 3.5, 4 to 5, and 1 to 5.  These ranges were partitioned into 3, 8, or 
16 values for the low, medium, and high levels of precision, respectively.  The remaining aspects 
of precision are the number of time steps between magnitude measurements (10, 5, and 1, again 
for low, medium and high) and the number of passes through the simulation (250, 500, or 1000 
events). 

The manipulation of precision had a significant impact on replicating the decision space.  The 
main effect of precision was that higher levels of precision resulted in less ambiguous decision 
spaces, that is, where the differences between the consequences of each option were more 
apparent.  In addition, this effect was exacerbated by the uncertainty of the initial estimate of the 
magnitude of the event.  When the estimate was more uncertain, the difference between the 
highest and lowest precision spaces was greater than when uncertainty was less.  That low 
quality data results in more decision ambiguity is not surprising.  However, these results suggest 
that one way to counter such uncertainty is to engage in a more extensive precise exploration of 
the distribution of plausible consequences.  

This first experiment demonstrated an example where using simpler, lower fidelity, consolidated 
models of a phenomenon significantly statistically changed the decision space.  It is described in 
more detail in Klein et al. (in press).  The next experiment extends these constructs regarding 
fidelity and precision to a different modeling environment (for pandemic influenza) with the 
intention of deriving general principles and/or a methodology to determine the boundary 
conditions of where models can and cannot provide decision-quality data. 

3.2 Pandemic Influenza Model Manipulation 

A second test case of this research was the high fidelity hybrid disease spread (Beeker, 2009) and 
process (Mathieu et al., 2009) model developed by MITRE.  This hybrid model is designed to 
run simulations for evaluating planned responses for pandemic influenza.  The hybrid model is a 
discrete-event, agent-based model.  The heart of the hybrid model is the calculation of infectivity 
(i.e., disease spread) and the course of action-related time delays (i.e., process model).  The 
calculation of infectivity is at the person (i.e., agent) level—it dictates the spread of the disease 
over time given initial disease-related parameters (i.e., strain infectivity, season, population 
susceptibility, and mortality rate).  A key behavior explored via the model is social distancing 
(i.e., individual compliance)—a voluntary behavior in which people stay home to avoid 
propagating the disease.  The calculation of the effect of process delays is also at the person 
level, including individuals (1) seeking medical attention (i.e., surge capacity), (2) using 
antivirals for treatment for the first wave, and (3) obtaining vaccination for the second wave.   

The hybrid model drives the distribution of costs for each course of action in the decision space 
(i.e., level of antivirals, use of social distancing, level of vaccination, and vaccination strategy).  
To map this situational information into the decision space a way of costing the results of each 
option was needed.  The cost of antivirals (1st wave), vaccines (2nd wave), and productivity loss 
(both waves) was scaled to the actual population (i.e., 75,000 people).  Productivity loss was 
calculated for both people-sick days and death, with a very high value assigned to death. 

Running the simulation also drives the computational cost of each run in terms of computer 
processing resources needed.  Therefore it is the precision of this hybrid model that is 
manipulated in this study.  Two datasets were generated to investigate the effect of precision 
using this high fidelity model.  Each dataset contained multiple predictions of cost for each of the 



sixteen possible courses of action for a given pandemic influenza event.  This data was generated 
according to one level of fidelity (i.e., hybrid model) and two levels of precision.  Precision in 
this study has multiple aspects, the first of which is how accurately the parameters and courses of 
action are sampled.  Each was selected from a normal or triangular distribution that represented a 
20% range for that individual value.  The high precision case utilized the selection from the 
distribution and the low precision case limited the selection to 3 values.  In addition, the high 
precision case had 800 families (~2170 agents) with 30 replicates, and the low precision case had 
400 families (~1085 agents) with 15 replicates.  

The model parameters and courses of action were based on Epstein et al. (2008).  Future work 
includes collaborating with these authors to investigate their equation-based model (i.e., lower 
fidelity) to explore the effect of fidelity and precision on recommended courses of action. 

3.2.1 Pandemic Influenza Results 

To test how different levels of precision may lead to different cost predictions, a 2 (precision: 
low, high) x 2 (social distancing: true, false) x 2 (daily vaccination strategy: true, false) x 2 (level 
of vaccination: 25%, 75%) x 2 (level of anti-virals: 10%, 50%) full-factorial ANOVA was 
performed.  Main effects for three of the four courses of action were found to account for a large 
amount of the cost for an event: the 75% level of vaccination (M = 8.89 x 108, SE = 1.33 x 107) 
led to much lower cost than the 25% level (M = 9.99 x 108, SE = 1.33 x 107), F(1,688) = 34.91, p 
< .001, ηp

2= .05; social distancing greatly reduced cost (true: M = 7.71 x 108, SE = 1.33 x 107; 
false: M = 1.12 x 109, SE = 1.33 x 107), F(1,688) = 340.79, p < .001, ηp

2= .33; while daily 
vaccination increased cost (true: M = 9.68 x 108, SE = 1.33 x 107; false: M = 9.21 x 108, SE = 
1.33 x 107), F(1,688) = 6.29, p < .05, ηp

2= .009.  

An interaction between the level of vaccination and social distancing indicated that the benefits 
of the higher vaccination level were eliminated when individuals practiced social distancing, 
F(1,688) = 13.33, p < .02, ηp

2= .009. These results are in Table 1 and Figure 2. 

 
Table 1: Social Distancing X Level of Vaccination Interaction for Cost 

 Vaccinating 25% Vaccinating 75% 

Social 
Distancing M SE M SE 

False 1.21 x 109
a 1.87 x 107 1.03 x 109

b 1.87 x 107 

True 7.92 x 108
c 1.87 x 107 7.50 x 108

c 1.87 x 107 

Means not sharing a letter differ per Tukey’s HSD, α=.050 



Figure 2: Social Distancing X Level of Vaccination Interaction for Cost 

 

Precision by itself did not significantly impact cost (p = .57), but two interactions with precision 
were found that did.  The first was an interaction between precision and the level of vaccination, 
shown in Table 2 and Figure 3, revealing that precision moderated the apparent impact of the 
level of vaccination, F(1,688) = 4.54, p < .05, ηp

2= .007.  The benefit of the 75% level is 
exaggerated in the low-precision condition, as is the increased cost at the 25% level, as compared 
to the levels observed in the high-precision condition. 

 

Table 2: Precision X Level of Vaccination Interaction for Cost 

 Vaccinating 25% Vaccinating 75% 

Precision M SE M SE 

Low 1.01 x 109
a 2.16 x 107 8.63 x 108

b 2.16 x 107 

High 9.83 x 108
a 1.53 x 107 9.14 x 108

b 1.53 x 107 

Means not sharing a letter differ per Tukey’s HSD, α=.050 



Figure 3: Precision X Level of Vaccination Interaction for Cost 

 

This interaction was moderated further by a three-way interaction between precision, level of 
vaccination, and social distancing, F(1,688) = 4.15, p < .05, ηp

2= .006.  The results are displayed 
in Table 3 and Figure 4. 

 

Table 3: Precision X Level of Vaccination X Social Distancing Interaction for Cost 

 No Social Distancing Social Distancing 

Precision 
Vaccinate 

25% 
Vaccinate 

75% 
Vaccinate 

25% 
Vaccinate 

75% 

Low 
1.24 x 109

a 

(3.06 x 107) 
9.83 x 108

b 

(3.06 x 107) 
7.88 x 108

c 

(3.06 x 107) 
7.44 x 108

c 

(3.06 x 107) 

High 
1.17 x 109

a 

(2.16 x 107) 
1.07 x 109

b 

(2.16 x 107) 
7.97 x 108

c 

(2.16 x 107) 
7.56 x 108

c 

(2.16 x 107) 

Standard error appears in parentheses under each mean. Means not sharing a letter 
differ per Tukey’s HSD, α=.050 

 



Figure 4: Precision X Level of Vaccination X Social Distancing Interaction for Cost 

 

As Figure 4 indicates, the interaction between precision and level of vaccination only occurs 
when social distancing does not occur.  Otherwise, apart from the clear main effect of social 
distancing, there is no apparent difference in the cost predictions of either the high- or low-
precision levels.  

3.2.2 Pandemic Influenza Model Summary 

The main effects and interactions found for the courses of action are not surprising, but do serve 
to validate the functioning of this model.  It is the interactions between the manipulations of the 
model – in this case levels of precision – and these various courses of action that can 
demonstrate whether such manipulations may lead decision makers to make incorrect decisions.  

The first example of this is in the interaction between precision and the level of vaccination.  The 
high-precision level shows a smaller benefit of implementing a higher level of vaccination. 
Although this may lead to over-expectations of the impact if one was to use the lower precision 
model, the benefit of the higher level of vaccination is statistically significant regardless of 
precision used. 

Another course of action plays a role in this relationship, which is social distancing.  The 
interaction between social distancing and the level of vaccination, described above, indicates 
how social distancing effectively negates the need for the higher level of vaccination – the same 
reduction of cost is achieved either way.  Similarly, the interaction between precision and level 
of vaccination disappears under social distancing conditions: the high- and low-precision levels 
describe almost identical levels of cost.  Once again, the impact of precision did not impact the 
ordering of the options in the decision space – normatively a decision maker should make the 
same choice under either model.   

 



3.3 Human-in-the-Loop Testing 

Our ultimate goal is to develop decision aids that present potential courses of action available to 
emergency responders or other command-and-control decision-makers.  To determine whether 
these aids improve decision quality, however, we first needed to develop test scenarios that were 
challenging in well-understood ways to ensure that we have tested under the full breadth of 
representative decision-making situations.  Thus, we devised a three-step method of developing 
scenarios, called a Principled Ambiguity Method of scenario design.  This method is described in 
more detail in Drury et al. (2009) but is summarized here as part of providing a complete 
overview of our inter-related research activities. 

The first step is to define the decision space (Hall et al., 2007).  As introduced above, the 
situation space is the factual description of a situation such as surveillance, sensor and alert 
information; and the decision space is the information needed to make decisions.  Put another 
way, the decision space consists of the results of transforming the raw situation data into 
something that characterizes the possible courses of action (COAs) in a way that helps decision-
makers choose a reasonable alternative from among these COAs.  We used the potential costs of 
each COA to populate the decision space. 

The second step is to determine the cost components of each decision’s potential consequences 
based on the principles of Robust Decision Making (Lempert et al., 2003 and Chandrasekaran, 
2007).   For example, we determined during our investigation in the emergency responder 
domain relative costs for each COA as a function of the following six items: 

Cost =  f{Mi, R, PDp, PDf, Ip, If}, where 

Mi Initial magnitude of the incident 
R Cost of sending resources, scaled based on the number of resources allocated 
PDp Property damage costs for the current incident 
PDf  Any additional property damage costs for future incidents that occur due to the 

response made for the current incident 
Ip Cost of injuries and/or deaths for the current incident 
If  Any additional costs of injuries and/or deaths for future incidents that occur due 

to the response made for the current incident 

The final step is to choose conflicting pairs of cost components (e.g., a small fire, implying low 
property damage, in a densely inhabited area, which implies high personal injury).  The basic 
idea behind developing challenging scenarios is to ensure that the scenarios are based on 
tradeoffs between two conflicting cost parameters: conflicting in the sense that one cost 
parameter might indicate one COA, and the other parameter might point towards another COA.  
The mental work needed to determine the “best” COA is more difficult in these ambiguous cases 
than if all cost parameters point towards a single COA.  

In an experiment to validate this approach (Drury et al., 2009), participants made decisions faster 
in non-ambiguous (control) cases as opposed to cases that included this principled introduction 
of ambiguity.  In fact, not only were the three ambiguous sets significantly different from the 
control, but post-hoc analysis showed they were all significantly different from each other as 
well.  By pitting decision cost components against each other in a structured fashion, we 
developed a reproducible approach for generating experimentally viable scenario events.  Our 



Principled Ambiguity Method of scenario design is also appropriate for use in other domains as 
long as they can be analyzed in terms of costs of decision alternatives.  

Now that we have a human-in-the-loop testbed and a principled method of developing scenarios, 
we are beginning human-subjects testing using simple visualizations based on box plots prior to 
developing and testing more sophisticated decision space visualizations. 

4. Summary and Future Work 

In the two computational modeling experiments that we have conducted to date, we 
systematically examined the impact of reducing the fidelity and precision of mathematical 
models, and the precision of agent-based models of the situation space.  These reductions of 
course led to decreases in computation time for lower fidelity/precision models.  However, they 
also resulted in statistically significant changes in the decision space.  

Nevertheless, in both experiments these changes were limited to the distance among the options, 
but not the ordering of the options in the decision space.  This suggests that normatively a 
decision maker should make the same choices under the less computational intense models as 
under the high fidelity/precision models.  Then again, we know people do not always behave 
normatively.  

Future experiments are planned to determine if indeed the impact on the decision space 
significantly impacts the psychology of the decision makers, either affecting their choices or 
their confidence in their choices.  In addition, we are conducting at least one more computation 
experiment on the disease spread models to compare the high fidelity agent-based models 
presented here with more computationally efficient but lower fidelity equation-based models.  
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