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Along with the advance of technologies and evolving variety of military missions, Edge 
Organization has been proposed to transform C2 from its conventional hierarchical and inflexible 
structures into more network centric and flexible forms. To develop a better understanding of 
Edge Organizations, in our research we take a dynamical and adaptive complex systems 
approach to exploring dynamical features of Edge Organizations and investigate how networking 
structures and self-organizing mechanisms may impact on the entropy of Edge Organizations and 
consequently determine their agility and performance. After defining the basic concepts, we 
introduce an agent-based simulation model that captures the interplay among networking 
structures, self-organization mechanisms, and organization agility and performance with entropy 
as an intermediate variable. Through simulation-based case studies using the proposed model, 
important dynamical features of Edge Organizations can be clarified and conditions for avoiding 
high entropy equilibriums and for achieving high level of agility be identified. In addition to the 
description of the proposed model, various measures of organizational entropy and 
organizational agility are discussed. A scenario design for future simulation studies is presented.  

1. INTRODUCTION 

The advances of technology have led to the transformation of the world from the traditional 
Industrial Age to the new Information Age. To respond to such transformation, a new 
organization form, called Edge Organization, has been proposed for the military to transform 
itself for more effectiveness and efficiency in the battlefields (Alberts & Hayes, 2003). To 
deepen our understanding of, and provide management guidance for, Edge Organizations, we 
take an dynamical and complex adaptive systems approach to exploring, through theoretical 
investigation, computer based simulation and practical validation, the dynamical features and 
agility of Edge Organizations and eventually developing a theoretical understanding that can be 
applied to explain the interplay between the structure, individual behaviors, and agility & 
performance of Edge Organizations. 

The concept of Edge Organization (EO) is defined based on the following four tenets:  1) a 
robustly networked force improves information sharing, 2) information sharing and collaboration 
enhances shared situation awareness, 3) shared situation awareness enables self-synchronization, 
and 4) these, in turn, drastically increase mission effectiveness (Alberts, 1996, pp. 7-8). 
Furthermore, the diverse military missions, such as peace keeping, and various forms of 
operation, such as coalition, have enlarged the phase space of the possible military operations, 
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calling for a dynamic and emergent process to approach military affairs in which maintaining a 
coherent focus describing the collective intent and a coordinated convergence to that focus is 
essential (Alberts D. S., 1996). Although the EO concept has been endorsed by the military as an 
enabler for future warfare, the present understanding of Edge Organization is still at the level of 
conjecture; little guidance is available for managing such organizations. To make EOs truly 
practicable, a better understanding is needed that can explain and predict EO behaviors and help 
military commanders facilitate and manage their Edge Organizations.  

The second law of thermodynamics (Clausius, 1865) predicts that a closed system, including life 
processes in general (Schrödinger, 1944) and human activities in particular (Wiener, 1948), tends 
to increase its entropy (or disorder) to the maximum. For an EO to maintain its order and 
therefore its effectiveness and efficiency, it must interact with its environment with efficient 
mechanisms to keep reducing its entropy. Given that an EO is an open system, the question then 
is: what mechanisms an EO can employ to maintain its viability? We identified two important 
mechanisms. One is structural: networking structure of EO agents, and the other behavioral: self-
organizing behavior of the agents. The overall goal of our research is to explore dynamical 
system features and their relations with agility in the context of Edge Organizations by focusing 
on the interplay between networking structure, self-organizing behavior and organization 
performance, with entropy as an intermediate variable. More specifically, we want to understand 
what are the macro-level (structural level) and micro-level (individual level) conditions that must 
be satisfied by EOs in order to attain high level organizational agility and performance, including 
shared awareness of situations, coordinated decision-making, and cohesive actions, in different 
task situations. Some of the general research questions we intend to address include:  

• What are the typical network features of Edge Organizations in terms of size, degree of 
connections, clustering, centrality, and hierarchy?  

• What are effective self-organizing mechanisms and how do they relate to increasing agility 
as well as reducing entropy?  

• What are the enablers and/or conditions of such self-organizing behaviors that are effective 
for Edge Organizations to achieve their focus and convergence while maintaining maximum 
agility?  

In the following sections, we first review the related work in Section 2 and then in Section 3 
introduce a physical metaphor and associated hypotheses for modeling various organizations 
including edge organizations. In Section 4, we present our ESO (Entropy and Self-Organizing) 
model of edge organizations and introduce a set of measures for evaluating the characteristics 
and effectiveness of edge organizations. Concluding remarks and future work will be described 
in Section 5. 

2. RELATED WORK 

Our research is built based on the ideas of entropy and second law of thermodynamics, multi-
agent systems, organization theory, network theory, and edge organization research. Entropy in 
physics is a measure of unavailability of energy. It is also associated with order, disorder and 
chaos in a thermodynamic system. The second law of thermodynamics dictates the physical 
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world by stating that the spontaneous evolution of an isolated system always leads to an increase 
of its entropy (or disorder) until it eventually reaches its maximum value, which is equilibrium. 
The entropy of the universe tends to a maximum (Clausius, 1865).  After the works of 
Shrodinger (1944) and Wiener (1948) and others, there is a consensus that life processes in 
general and human activities in particular are thermodynamic processes. While the second law 
does not directly apply to human organizations that often are open systems, it clearly indicates 
the wind-down tendency of an organization in the absence of effective interactions between the 
organization and its environment. Researchers have demonstrated that a dissipative system (like 
an organization) can stabilize its otherwise improbable structure at the expense of the 
compensative or negative entropy production due to energy and/or information flow through that 
system (Prigogine & Stengers, 1984). This dissipative system theory has led to the research on 
the systems featuring self-organizing, a mechanism that facilitates the exchange between the 
system and its environment and leads to complex, stable and orderly emergent system behaviors. 
The concept of entropy and the second law together with the notions of dissipative and self-
organizing systems provide a strong theoretical basis to model, verify, and evaluate Edge 
Organizations.   

Self-organizing is a mechanism or process that enables a system, either physical, biological or 
social, to change its organization without explicit external command and/or control during its 
execution time (Serugendo, Gleizes, & Karageorgos, 2005). It is basically a process of evolution 
where the development of new and complex structures emerges primarily in and through the 
system itself. A self-organizing system must be an open system since the self-organizing 
processes decrease the system’s entropy and must dissipate such entropy to its surroundings (von 
Foerster, 1960). A system shows self-organizing if its behavior shows increasing redundancy, 
information, and constraint. In human organizations, self-organizing is a dynamic change within 
the organization by reinventing new structures and policies in order to survive, grow and 
develop. One example is organization learning that allows self-organization, rather than 
attempting to control the bifurcation through planned change (Dooley & Johnson, 1995). The 
structuration theorists also introduced the self-organizing concept into social systems by 
interpreting the relationship of social structures and social practices/actions as dialectical 
(Giddens, 1984; Fuchs, 2003). In such theories social structures enable and constrain social 
actions and are produced and reproduced by social actions.  

In multi-agent systems, agents’ local learning mechanism is often a self-organizing process. The 
research has shown that in a multi-agent system, agents can model the environment in a self-
interested way without sharing knowledge, and a game dynamics emerges naturally through 
environment-mediated interactions (Sato & Crutchfield, 2003). Further, the collective learning 
dynamics emerged from the local reinforcement learning exhibits a diversity of competitive and 
cooperative behavior including quasi-periodicity, stable limit cycles, intermittency and 
deterministic chaos. The behavior can be modeled using a generalized form of coupled replicator 
equation. Reinforcement learning can be taken as an algorithm for agents to optimize their local 
policies; the agents can use their learned knowledge about others to undergo a specific self-
organizing mechanism so that the global network can be dynamically optimized (Abudallah & 
Lesser, 2007). The self-organizing behavior of agents has also been studied among the 
networked agents. The research has shown that in the case of networked prisoner’s dilemma 
game, the ratio of collaborating agents is dependent on the type of the network and the average 
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degree of connections (Tang, Wang, & Wang, 2006). Multi-agent based modeling has also been 
adopted in studying military combat and warfare situations (Ilachinski, 1997) and various system 
measures were developed to evaluate the complexity of combat situations (Sprague & Dobias, 
2008), although edge organization issues were not explicitly addressed in these studies. Edge 
organizations feature distributed local control and self-synchronizing (Alberts & Hayes, 2003). 
Studying the roles and effects of self-organizing in edge organizations and how does it facilitate 
information flow (Nissen, 2007) is essential for both understanding and practicing edge 
organizations. 

The structure of an organization plays a key role in determining the organization’s performance. 
Organization researchers have examined how the structure of control or decision-making 
influences the behavior of organizations (Mintzberg, 1992) and how different task dependencies 
may demand different control and communication structures (Thompson, 1967; Galbraith, 1974). 
Structuration theorists view both rules and resources as components of structures that both 
enable, and are reproduced by, human actions (Giddens, 1984). A social system is defined as an 
“interdependence of action” made up of an established network of relationships and network 
conditions which moderate any change effort targeted at a subsystem (Giddens, 1979). The 
research in organizational learning has investigated the roles of individuals’ belief and aspiration 
in determining the decisions of refining current capability or exploring new ones (Levitt & 
March, 1988; March, 1991). Recent research on complex networks including social network, 
information network, technological network and biological network, has deepened our 
understanding of various types of networks, their properties, and the application potential of 
network analysis (Newman, 2003). It has been recognized that scale free networks with a power-
law degree distribution, such as those found in social networks, can be highly resistant to the 
random attacks to the network nodes, but are quite sensitive to targeted attacks aimed at 
fracturing the network quickly. Small world networks, as found in many biological systems, are 
more robust to perturbations than other network architectures. In applying network analysis to 
organization research, it was found that R&D organizations can enhance their effectiveness by 
promoting communication outside the formal, hierarchical boundaries (Allen, 1977). In cases of 
environmental change, organizations are better off if they adopt an organic, nonhierarchical and 
informal structure (Burns & Stalker, 1961) and maximize strong cross-departmental relationships 
(Krackardt & Stern, 1988). Dynamically changing environments create uncertainties for the 
individuals that make them less comfortable to cross subunit boundaries to interact with others; 
while more cross subunit cooperation is the key to stabilize the whole organizations (McGrath & 
Krackardt, 2003).  

Edge organization research to date has conceptualized numerous C2 (Command and Control) 
approaches (i.e., organization and management of people and activities) (Nissen, 2008). Alberts 
and Hayes (2006) introduce the three-dimensional C2 Approach Spaced depicted in Figure 1. As 
a closely related research work, Gateau et al. (2007) conceptualize and execute computational 
models for six organizational forms (i.e., each corresponding to an alternate C2 approach), 
including Mintzberg’s (1979) five archetypal configurations and the Edge Organization (Alberts 
and Hayes 2003, Nissen 2005). Computational model POWer based results were used to reduce 
the large, multidimensional space into a minimal orthogonal design space (Nissen, 2008). 
Furthermore, ELICIT (Experimental Laboratory for Investigating Collaboration, Information-
sharing and Trust) multiplayer intelligence game was developed to frame testable hypotheses 
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about the relative effectiveness of edge organizations in comparison to other methods of 
organization through a series of real-world experiments. Numerous ELICIT based experiments 
have been reported using ELICIT (Leweling and Nissen 2007, Ruddy 2007).  

 

Figure 1: C2 Approach Space (Alberts and Hayes 2006) 

3. A PHYSICAL METAPHOR AND HYPOTHESES 

Building on previous work, our research attempts to investigate how edge organizations work 
and why they work in certain ways as compared to conventional C2 organizations.  We attempt 
to understand both endogenous (organizational) and exogenous (environmental or task 
dependent) conditions for edge organizations to work effectively by examining the interplay 
between collective characteristics such as focus and networking structure and self-organizing 
mechanisms that are needed to convergence to the prescribed focus.  

The basic idea behind this research is two-fold: 1) the highly dynamical behavior of edge 
organizations have made it important to treat them as dynamical systems and investigate their 
dynamic evolution process in which no single command or control exists and the focus must be 
shared and the convergence to the focus be maintained; and 2) a dynamic system must employ 
effective self-organizing mechanisms to maintain its productive relationships with its 
environment so that the system entropy can be kept reduced; it is therefore essential to 
investigate how both structures and self-organizing mechanisms are related to the tasks and 
battle environments for their best organizational performances.  

Following the basic idea described above, we can speculate how various organization forms may 
exhibit different dynamical system features, as illustrated in Figure 2. Traditional hierarchical 
organizations have clear control/reporting structures and can be viewed as close to solid state of 
physical matters. In general, this type of systems has high level of informational redundancy 
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(i.e., knowing one node leads to knowing the others) so that the entropy is low. In this case, the 
system possesses strong capability or energy, due to low entropy, to perform its intended tasks. 
However, when changes occur, both exogenous and endogenous, the inflexibility due to tight 
links between the nodes of will impede its functionalities. On the other hand, when an 
organization is in case of anarchy, as shown in Figure 2, it can be viewed as close to gas state in 
which the level of uncertainty (i.e., knowing one node does not increase knowledge of any other 
node) cannot be higher so that the entropy is at its maximum. While in this case the system can 
“deal with” any situation invariably, the quality of work will uniformly unacceptably low.  

 

Figure 2: From Hierarchy to Edge: Dynamical Features 
Edge organizations can be viewed as in a state in between, liquid state, as shown in Figure 2. In 
this case, the system appears less uncertain (i.e., knowing one node does allow one to know 
more, but hardly all, of the system) so that the entropy is medium. This medium level entropy 
provides potential for the system to do both adapting and functioning. Less constrained, or 
sometimes even unconstrained, patterns of interaction, decision allocation, and information 
distribution give rise to innovative possibilities. At the same time, a variety of distinguishable 
patterns of control, communication and action provide momentum for the system to work 
effectively under various situations. From a complex system’s perspective, for an Edge 
Organization to effectively performing adapting and functioning through choosing among the 
innovative possibilities, it requires the intervention of two antagonistic manifestations (Nicolis 
and Prigogine, 1989): short-range randomness, providing innovative options to explore the state 
space; and long-range order, enabling an edge organization to sustain a collective regime.  

Following the same line of thinking, we can establish corresponding relationships between 
system attributes and system states for different types of organizations including conventional 
military organizations, companies, professional societies, and social societies, as described in 
Table 1.  
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Table 1: System Attributes and Corresponding System States 
System Attributes <----- static             System States           dynamic  -----> 

System 
Entropy & 
Equilibrium 

Entropy Low Medium High Max 

Distance from 
Equilibrium No Equilibrium Far from Equilibrium Close to 

Equilibrium 
On 

Equilibrium 

System 
Behavior 

Macro Level Behavior Designed Order Emergent Order Disorder Chaos 

Micro Level Behavior Designated 
Behavior Weak Self-organizing Strong Self-

organizing 
Independent 

Action 

Sample 
Systems 

Physical Systems Solid or Artifact Liquid Liquid-gas Gas 

Human Organizations Conventional 
Military 

Companies  Universities 
(Garbage Can Model) 

Universities  
Societies Society 

System 
Properties 

Structure Hierarchy Small World Network Scale Free 
Network 

Random 
Network 

Stress High Medium Low None 

Entropy Production Rate High Medium Low Zero 

Resilience Low Medium High Very high 

Robustness Low Medium High Very high 

Power or Control Centralized Middle Edge Edge Individual 

Maintenance Cost High Medium Low Zero 

Conventional hierarchical military organizations are more static, have low entropy, but are less 
robust and less resilient. The move toward Edge Organizations implies the move to more 
dynamic and “fluid” organizations. It is worth mentioning that the “Garbage Can Model” of 
organizational choice in universities (Cohen et al, 1972) can be considered as a primitive type of 
Edge Organization. Our physical metaphor together with our review of the extant literatures has 
led us to the following hypotheses about edge organizations.  

Hypothesis 1: 

An Edge Organization must maintain one or more dynamical and changing hierarchical 
structures in response to the situation change in the battlefield and other military missions. In his 
seminal work (Simon, 1981), Simon indicated the existence of hierarchy in almost all complex 
systems and argued the efficiency and robustness of such hierarchical forms. Our intuition is 
consistent with Simon’s notion and we further hypothesize that the reason to maintain such 
structures is to keep to the overall entropy of the organization low so that there will be energy for 
desired actions. We intend to investigate and validate this intuition. 

Hypothesis 2: 

For an Edge Organization to exhibit “fluidity”, it must generally have low-level (closer to 
individual) randomness (i.e., unconstrained in any way) and high-level (at a larger scale) order 
(i.e., somehow constrained in some way). A true complex system, such as an Edge Organization, 
should have its complexity profile follow the Power Law with respect to the level of details. This 
requirement implies that the system must have high complexity (i.e., uncertainty, disorder) at 
lower levels for changing and adapting to new situations and low complexity at higher levels for 
maintaining the focus and convergence. This hypothesis assumes the Hypothesis 1 and is 
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consistent with the “short-term randomness and long-range order” condition for complex 
systems discussed in (Nicolis and Prigogine, 1989). 

Hypothesis 3: 

In order to maintain such dynamic task dependent structures, EOs must possess and exhibit 
effective and changeable self-organizing mechanisms. The literature (Ashby, 1962; Heylighen & 
Joslyn, 2001) has shown that self-organizing behavior generally generates negative entropy and 
introduces order into a system by interacting effectively with the environment. Our hypothesis 
indicates that this relationship should apply to EOs with respect to dynamic structuring described 
in Hypothesis 1. 

Hypothesis 4: 

To sustain the self-organizing dynamics for entropy reduction, EOs must absorb information 
and/or energy from its environment; thus providing effective information infrastructures for the 
EOs is the key for the EOs to maintain its low level of entropy. It has been clearly shown that 
thermodynamic entropy can be considered as a special case of Shannon’s information entropy 
(Jaynes, 1957) where the enlarged state space with high level of entropy indicates the missing 
information when viewed from a macro-level. This hypothesis treats information flow the same 
way as the energy (e.g., supply) flow.  

Hypothesis 5: 

Edge organizations are “evolutionary” in the sense that the “Focus” is maintained and/or 
achieved through evolving “fitness functions” of both individuals and organization, and the 
“Convergence” is realized by self-organizing mechanisms. Our proposed approach assumes a 
dynamical and evolutionary process of organization actions in which agents interact and self-
organizing based on their own performance assessment. We hypothesize that the Focus & 
Convergence concept (Alberts, 2007) can be mapped to our view of Edge Organizations. 

4. ESO: A ENTROPY AND SELF-ORGANIZING MODEL OF EDGE 
ORGANIZATIONS 

Our exploration of features and agility of Edge Organizations is simulation based and we 
propose an Entropy and Self-Organizing (ESO) Model of Edge Organizations. Figure 3 
illustrates the dependent, independent, and control variables of the model. In the following, we 
introduce the key concepts of ESO model and discuss the characteristics and implications of 
these concepts. 

Dependent
Variables  

 

 

 

 

Task 
Environment & Disturbance

Edge 
Organization 

Network
Structure Entropy Independent 

Variables 
Agility & 
Performance 

Self-organizing 
Mechanisms

Control 
Variables

Figure 3: A Self-Organizing Model of Edge Organizations 
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4.1 EDGE ORGANIZATIONS AS SELF-ORGANIZING SYSTEMS 

In our ESO model, an edge organization is defined as a self-organizing system, which is defined 
as follows. 

Definition 1 (Self-Organizing System): Given a finite set of agents , their 
communication relations: , their control relations: 

,  their action rules: , their 

interaction rules: , their partially shared knowledge: 

, a set of tasks: , and the environment: , 

a self-organizing system is defined as: 

1 2{ , ,..., }NAgt a a a=
}

1 2
{ , ,...,

Na a aU ua ua ua
1 2 1 3 1i j N Ncomm a a a a a a a a−

1
, ..., }

i j N Na a a arn rn
− act =

1 2 1 3 1
{ , ,..., , ..., }

i j N Na a a a a a a aU ub ub ub ub
−

=

, ...}
m na 1 2{ , ,..., }LT ts ts ts=

so

{ , , ..., , ...,R rm rm rm rm=

{ , ,...,R rn rn= }

}v

1 2 1 3control a a a a

interact

1 2 5 1 3
{ , ,...,

i jsh a a a a a a a aK k k k=

S

Env

{ , , , , , ; ,so comm control act interact shS Agt R R U U K T En=  ■   (1) 

In the above definition, communication relations define “who can talk to whom”, while control 
relations specific “who can order whom (to do something).” Both relations are most likely to be 
dynamic and time dependent, although they can be set to be static. Action rules specify “how 
agents should deal with the environment excluding other agents”, and interaction rules define 
“how agents should deal with each other”. Again these rules can be either static or dynamic. 
Shared knowledge indicates “which knowledge is shared among whom”. A piece of knowledge k 
can be a goal or objective, a fact, a statement of some agent that can be either true or false, or a 
commonly accepted norm. Based on the above definition, we can derive following characteristics 
of edge organizations. 

• Homogeneity (homogeneous vs. heterogeneous): the degree to which agents share 
relations, rules and knowledge.  

• Connectedness (loosely vs. tightly connected): 
the level or degree of connections among 
agents through communication and control 
relations. 

• Centrality (centralized vs. decentralized):  the 
degree, closeness, betweenness and cluster 
coefficient levels.  

• Sophistication (simple vs. sophisticated):  the 
level of complexity and size of rule sets and 
knowledge set. 

• Sharedness (weak vs. strong sense of whole): 
the level and amount of shared knowledge of 
the whole system, e.g., shared goals, norms, processes, activities, rules, relations, and 
awareness of the environment. 

 

Figure 4: Space of Exploration 
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The above characterization provides us with a three dimensional space of research exploration, 
as shown in Figure 4. In this space, the edge organization concepts such as focus, self-organizing 
mechanisms, and networking structure corresponds to levels of sharedness, sophistication and 
centrality/connectedness, respectively  

4.2 SIMULATION DESIGN 

To explore the edge organization space illustrated in Figure 4, we developed a simulation design 
that is simple in the level of sophistication but rich enough in other dimensions for us to address 
the hypotheses described above. Figure 5 provides an overview of our simulation design. 

 • Organization 
o Homogeneity: homogenous 
o Connectedness: modestly 

connected  
o Centrality: centralized & 

decentralized 
o Sophistication: simple 
o Sharedness: weak & medium 

• Field 
o Valuable areas 
o traps 
o Blocks & Openings 
o Enemies (for 2-party) 

• Mission 
o Occupy valuable areas 
o Avoid traps 
o Annihilate enemies (for 2-party) 
 

• Agent 
o Actions: move, find new attractors 

& traps 
o Interactions: identify others, issue 

and receive information 
• Enemy situations 

o Conventional: 
– Predictable field situations (i.e., 

 

 

 

 layout of the field) 
o New: 

– Highly unpredictable field 
situations (i.e., valuables, traps 
& blocks pop-up randomly e.g., 
terrorist situations) 

• Performance 
o Effectiveness: attractors 

occupancy 
o Efficiency: distances traveled 

 

 

 

 

Figure 5: Simulation Design 

To evaluate the performance of different C2 organizations including edge organizations, we 
designed a virtual 2D battlefield based on the MASON software platform (http://cs.gmu.edu/ 
~eclab/projects/mason/). The battlefield is a bounded square with featured areas in it. The 
featured areas include the valuable areas that attract agents to occupy, the blocks that the agents 
cannot move through, and the traps where the agents cannot move again once entered.  

Definition 2 (Environment): In our simulation design, the environment Env
, }Qv

is defined by a 
bounded battle field in which there are valuable areas: V v1 2{ , ,...v= , disaster traps: 

1 2{ , ,..., }PD d d d= , and blocks: 1 2{ , ,..., }RB b b b= . We have: 

1 2 1 2 1 2{ , , } { , ,..., , , ,..., , , ,..., }Q P REnv V D B v v v d d d b b b= = ■   (2) 

The environment can be either static and predictable or dynamic and unpredictable. To capture 
the dynamical change of the environment, we define the environment at given time ti, Env(ti), as 
a situation S(ti) = Env(ti). We have: 
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Definition 3 (Situation):   For a given environment, the situation St at time ti is defined as 

1 2( ) { ( ), ( ),..., ( )} ( )i i i Q P R iSt t s t s t s t Env t+ += i=

y j  
under action rules 
organization k ow

ated in 

■    (3) 

It can be seen that a situation item sj can be a valuable area, a trap, or a block. An agent can be 
aware of one or more specific situation items. If the agent knows part/all the situation items 
correctly at a given time, then we say that the agent has the partial /full situation awareness at 
that time.  

Two types of tasks are defined in the simulation. One is “ts1 = occupy valuable areas” and the 
other is “ts2 = annihilate of enemy forces”. In a one-party simulation, ts1 becomes the only task 
considered.  In case of two-party simulation, a combat is finished when either one of the two 
parties fulfill both ts1 and ts2. Given the above concepts we can introduce the definition of agent. 

Definition 4 (Agent):  An agent ia  of part , capable of performing actions 1 2{ , ,...}iC act act=

ia and interaction rules charged with tasks 1 2, }iTs ts⊆ , equipped with 
nowledge 1 2{ , ,...}iKo ko ko=  and situation kn 1 2, , ..}ks , and 

currently loc t state { , ,ista move trapped occupied

u

loc

 iub {ts
ledge iKs

}
{ .ks=

{ ,i ix y= }i a ∈ , we have: 

{ , , , , , , , , }i i i i i ai b i iia j Ts C Ko Ks u u loc sta= ■     (4) 

In our simulation design, an agent can perform some or all of five actions, i.e., 

Table 2: Agent Action and Interaction Rules

Actions 

{ , , , , }sense move communicate assignTask stay . Action and interaction rules are listed in Table 2. 

 

Rules 

Sense: 
R

si

1) Put all situation items within the vis nge into the recognize
ecognize 

stuation item
and agents 

 

ibility ra d‐situation‐list.
2) Remove situation items out of the recognized list when they are out of the range 
3) Put all agents within the communication range into the recognized‐agent‐list. 
4) Remove agents out of the recognized list when they are out of the range 

Move: 
Change

ed.

 valuable areas if needed. 

 location 
5

(x,y) one step at 
a time 

) Move randomly in x or y direction if no valuable area, trap or block is recogniz
6) Move toward the closest valuable area if one or more valuable areas are 

recognized. 
7) Move away from traps if recognized. 
8) Avoid blocks and find passages toward

Communi   a  pre‐defined cate:  9) In  Hierarchy  setting,  communicate  only  with  those  who  are  on
Pass Ko & Ks to 
others when 

potential exists 

hierarchical communication list. 
10) In Edge setting, communicate with all those who are on recognized‐agent‐list. 

Collaborate: 
Help other when 

requested 

11) In Hierarchy setting, collaborate with only those with whom a pre‐defined control
link exist. 

12) In Edge setting, collaborate with all those who are on recognized‐agent‐list. 
Stay: 
 ac  foNo tion r 

1

the next move 

3) Stay with a valuable areas whenever the agent is in the area. 
14) Stay with a trap whenever the agent is trapped. 
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 As illustrated in Table 2 and Figure 6, an agent in our simulation model does the following in a 
simu e; 2) 

 In 

 
With predefined & static hierarchy links  

With dynamically formed network

(a) Agent in a Field  (c) Edge Organization

: Agent and ent Setti

 

Figure 7: The Simulated Battle Field (1-Party Case) 

lation session. 1) Move in the field randomly in either x or y direction one step at a tim

n different organizational settings.
case of Hierarchical setting, both communication and control links are predefined and they 

Sense situation items and other agents and collect the sensed information; 3) Avoid traps, move 
around blocks, and move toward valuable areas and stay if reached, 4) Send and receive 
information to and from other agents about the situation.   

The relations between agents are established differently i

remain static, while in Edge settings, communication relations are dynamically established 
depending on the spatial relations between agents, as shown in Figure 6(b) and 6(c), respectively. 
As shown in Figure 6(c) the control relations in Edge organization is not clearly defined. It is 
hypothesized that the agents with more links to the others and those with more information than 
others will likely to gain control from the “power” of having more links and more information 
rather than from the “authority” as in the case of hierarchy. An example scenario of simulated 
battle field is shown in Figure 7. The agents’ goal is to occupy as many valuable areas as soon as 
possible. 

(b) Hierarchical Organization

Figure 6 Organizations of Differ ngs 
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4.3 ORGANIZATIO

te, performance, and agility of 
edge organizations has been a major task for research on combat and warfare in general and for 

organizational entropy 
should be a measure of disorder, or disorganization of organizations. In military organizations, 

  For a given agent ai working on a task of type tsj, if the 
average complexity of tsj is Cxj, then the decision difficulty of tsj for ai can be defined as follows: 

We assume that for a given military organization, ents 
involved in the military operations. For agent ai, the (AmountOfInformationNeeded) can come 

 

NAL ENTROPY AND SITUATION AWARENESS 

Developing sensible and effective measures to evaluate the sta

the edge organization research in specific (Alberts, 2007). In our research we divide 
effectiveness measures into two categories. The first category, namely organization entropy and 
situation awareness, measures the state of an edge organization at a given time in a mission 
process and its potential to continue and complete military missions. The second category, 
namely performance and agility provides a result-oriented view of how effective an edge 
organization is when missions are ended either successfully or in failure.  

Developing an adequate entropy measure is a challenge. Generally, 

the level of entropy can be ultimately determined by the inability to perform military actions that 
contribute positively to the mission focus. There can be various cases in which military 
organizational entropy increases. Examples include casualties, injuries, loss, or lack of supply, of 
equipments, and loss or degradation of communication. Carvalho-Rodrigues (1989) suggested 
attrition based combat entropy that measures the level of organizational disorder as a result of 
number of casualties occurred in both friend and enemy sides. Ilachinski (2004) proposed spatial 
entropy that measures the spatial distribution of solders in the battle field. Recent work by 
Sprague and Dobias (2008) suggested using more complex system measures such as fractal 
dimension, Hurst exponent, and self-similarity parameter to measure both spatial and temporal 
distributions of combat forces. Common to all these previously suggested measures is the object 
of evaluation: the physical states (i.e., casualties, spatial and/or temporal distribution) of combat 
forces. Unlike all these measures, in our research we look into the reason that leads to such 
physical states:  the inability of making proper decisions by the agents engaged in military 
operations. Therefore, we define military organizational entropy by measuring an organization’s 
inability to make proper decisions.  

Definition 5 (Decision Difficulty):

( )i jQ Cx AmountOfInformationNeeded= × ■     (5) 

 there are M information sources and N ag

from any or all of the M information sources and/or N agents. If we further assume the 
probability for ai to choose information source m is pi(m), and the probability for ai to 
communicate with agent an is pi(n), then by following Shannon’s (1951) entropy definition we 
have: 

1

( )

1 1
    = ( ) log( ) ( ) log( )

( ) ( )

i j

M N

j i i
i im n

Q Cx AmountOfInformationNeeded

Cx p m p n
p m p n

−

= ×

× +
⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑    (6) 
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When agent ai has total K different tasks, we have: 

11
( ) log( ) ( ) log(

1
( ) ( )

M N

i j i i
i im n

K

k
Q Cx p m p n

p m p n

−
= × + )

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑∑   (7) 

al entropy (decision difficulty) as follows. 

Definition 6 (Organizational Entropy):  For an organization with K tasks, N agents, and M 
information resources, its organizational entropy measured as ision 
difficulties of all agents is defined as: 

Summarizing over all agents, we define organization

a summation of dec

11 1M NK N −⎡ ⎤
( ) log( ) ( ) log( )

( ) ( )j i i
i im nk i

Q Cx p m p n
p m p n⎢ ⎥

⎣ ⎦
■  (8) 

It can be seen that the second item

= × +∑ ∑∑ ∑

 of the above equation is the “entropy of actionable 
information” of military organizations. Based on this definition of organizational entropy, we can 
derive following implications about edge organizations.  

• The equilibrium state: As shown in Eq. (8), the maximum entropy is reached when all 
( )ip m and ( )ip n are equally distributed for all agents. This is the “no structure at all” or “gas” 

 acquire needed information in order to 

• 

inaction situation. New discovery of the field situation by the 

• 

ho knows what. This non-discriminative networking based high 

situation where everyone can talk to everyone else in the organization but has no idea about 
how to differentiate other agents.  The corresponding organization is anarchy and has no 
focus, no norm, and no reference at all for an agent to
make proper decisions.  

Information potential: To reduce entropy level and move away or keep away from 
equilibrium, an organization must maintain information potential between agents and/or 
influx of information from external sources. This suggests that “everyone knows everyone 
else knows” is not necessary a desirable situation in the sense that little information will flow 
between agents, leading to an 
agents and/or new influx of information from external sources can create new information 
potentials and promote more information flows, resulting in reduced organizational entropy. 
How to create and keep information potential can be an important issue for edge organization 
design and management. 

Structural entropy vs. system entropy: Eq.(8) can be used to describe organizational 
structural entropy that depends only on the topology of communication links or channels 
available without counting the distribution of information.   In this case, it can be seen that a 
complete network of agents will likely create a high entropy situation since agents may not 
have information about w
entropy situation can be improved by introducing information potentials and letting agents 
explore and recognize the potentials. It is therefore important for an edge organization to 
maintain effective self-organizing mechanisms that allow agents efficiently discover 
information potentials so that the system entropy can be reduced. 
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mea
sim

Def

 above implications of the organizational entropy measure of Eq.(8) has led us to developing 
sures that can evaluate the information potential of an organization at a given time. For the 
ulation scenario discussed above, we introduce the following information potential measure. 

inition 7 (Information Potential): Given a set of agents Agt 1 2{ , ,..., }Na a a=  and a set of 
situation items 1 2( ) { ( ), ( ), ..., ( )}i i i L iSt t s t s t s t= , the information potential with regard to situation 
item ls  is defined as: 

{2
1 1

0, if  is not aware ofl i
s i l j l i l

i j
aN = =  

or
 

1, if  is aware of 2 N N a s
 | |;   i l

ls
PI a s a s a s= − =∑∑      (9)

2
4 (

l

l l
s

)Ks N KsPI
N
−

= ,    where Ksl is the number of agents who are aware of . (10)
 

Summarizing through all situation items, we define the organizational information potential as 

ls

{2
1 1 1

1, if  is aware of 
0, if  is not aware of 

2 | |;  i l
i l

 

L N N

i l j l i l
l i j

a s
a sa s a s a s

L N = = =
= − =

⋅
∑∑∑     (11)

or 

PI

1
2

4 ( )l l
l

Ks N Ks
PI

L N
=

−
=

⋅

∑
,    where Ksl is number of agents who is

From Eq.(9) we can see that if no agent knows situation item , then the information potential 
for s will be 0. When s is first discovered by an agent, the inf ation potential of this situation 
item ill start to incre ; afte e w 
the situation item, it will decre  sl. 
The increasing/decreasing rate of information potential depends on spatial distribution of agents 

L

 aware of ls .■ (12)
 

ls
orml  

 w
l

ase r it reaches the maximum value 1.0 when half of th  agents kno
ase until being zero again, when all the agents become aware of

and the communication speed between agents. 

The concept of information potential described above can further be extended to evaluate 
organizational situation awareness. We introduce the following definition. 

Definition 8 (Situation Awareness): Given a set of agents 1 2{ , ,..., }NAgt a a a=  and a set of 
situation items 1 2( ) { ( ), ( ),..., ( )}i i i L iSt t s t s t s t= , the situation a n item s  is 

 

wareness for situatio l
defined as follows.  

{
1

1, if  is aware of 
0, if  is not aware of 

1 ;   
l

i l
i l

N

s i l i l
i

a s
a sAs a s a s

N =
= =∑      (13) 
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Summarizing over all the situation items, we define organi awareness as 
follows. 

zational situation 

{
1 1

1, if  is aware of 
0, if  is not aware of 

1 L
;   i l

i l

N

i l i l
l i

a s
a sAs a s a s

L N = =
= =

⋅ ∑∑  ■    (14) 

The entropy, information potential and situation awareness measures described above are all 

making processes are facilitated by both organizational structure and policies or focuses 
and agent self-organizing mechanisms. We expect our simulation based case studies will lead us 
to better understandings of edge organizations with the help

4.4 ORGANIZATIONAL PERFORMANCE AND AGILITY  

changing dynamically during the execution or simulation process of mission operations. The 
time history of these measures will be important indicators of how well the information flow and 
decision 

 of these indicators. 

Given our simulation design discussed in Section 4.2, the performance measures are relatively 
straightforward. That is, the goal of our 1-party simulation is to have “as many agents occupying 
as many valuable areas as possible” and “do so as fast as possible”. We introduce the following 
effectiveness and efficiency measures. 

Definition 9 (Mission Effectiveness): Given a set of agents { , ,...,1 2 }NAgt a a a=  carrying out 
{ , , ,..., }Roccupying missions in the environment { , , }Env V D B 1 2 1 21 2,..., , , ,..., ,Q Pv v b bv d d d b=  , =

the mission effectiveness is defined as 

1 1
( ) ( )

;

Q P
i i

1, if is occupied by at least 1 agent
0, if is not occup

1, if at least 1 agen

( ) i 
i 

i
v

ied

t is tr
0, if no agent is trapped in ( )

i 

i i

i

occupied v trapped d
Effe Q

= =
−

=
∑ ∑

v

dtrapped d = apped by  i d
⎨
⎪⎩

■ 

Based on this performance measure, an organization should strive to occupy all valuable areas 
and avoid being trapped in any of the traps. Crowding
rewarded well. For a given effectiveness measure, the efficiency of achieving the end 
performance can be measured by the “time” needed  to complete the mission and the “energy” 
applied, measured by total distance traveled by the agents.  

ility, on an organizational level, refers to efficiency with which an organization can respond to 
nge. Agility is not about how to respond to changes but it is about having the capabilities and 

where

occupied v
⎧⎪
⎨
⎪⎩

=

⎧⎪

     (15) 

 in one or a few valuable areas is not 

Ag
cha
processes to respond to its environment that will always change in unexpected ways. Following 
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Alberts (2007), in our research we define the concept of an organization’s agility in terms of its 
agile performance and fundamental agile capabilities. More specifically, we have: 

Definition 10 (Performance Agility): For a given set of agents 1 2{ , ,..., }NAgt a a a=  carrying out 
occupying missions in the environment 1 2 1 2 1 2{ , , } { , ,..., , , ,..., , , ,..., }Q P REnv V D B v v v d d d b b b= =  
the performance agility of the organization is defined as 

 ( )PAgl B Robustness S Resilience;   B and S are weights= ⋅ + ⋅    (16)  

( )1-
( )

Effe EnvRobustness
Effe planned
Δ Δ

=        (17) 

( )1-
( )

Effe AgtResilience
Effe planned
Δ Δ

 = ■    

As shown in the definition, performance agility measures how the organization performance 
varies depending on the exogenous c

   (18) 

hanges EnvΔ  (robustness) and endogenous changes AgtΔ  
(resilience). Less variation or less sensitivity to the changes means high level of perform
agility. 

mance agility, we also attem
fundamental agility because it indicates fundamental inherent reasons why performance agility 

ance 

Besides perfor pt to measure the process agility, which we call 

can or cannot be achieved. We introduce the following definition,  

Definition 11 (Fundamental Agility): For a given set of agents 1 2{ , ,..., }NAgt a a a=  carrying 
out occupying mi ent ssions in the environm

1 2 1 2 1 2{ , , } { , ,..., , , ,..., , , ,..., }Q P REnv V D B v v v d d d b b b= =  the fundamental agility of the 
organization is defined as 

= ⋅ + ⋅ + ⋅
( , , , ) A B C D are weights  (19)  

FAgl A Responsiveness B Flexibility C Innovativeness D Adaptiveness;  + ⋅

1 ResponseTimeResponsiveness =
MaxEffectiveResponseTime

−  

 

    (20) 

NumberOfMethodsFlexibility
NumberOfTasks

=        (21) 

NumberOfInventedMethodsInnovativeness =
TotalNumberOfMethods     (22)   
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NumberOfChangedMethodsAdaptiveness

TotalNumberO
=

The word methods used in the above definitions refer to organizational processes and structural 
relations. While performance agility AglP is a depe
intermediate system variable and can be influenced by self-organizing mechanisms. 

. CONCLUDING REMARKS 

The changes of military missions to date have led to the demand for more agile command and 

conventional 
rigid C2 organizations more adaptable, our current understanding of, capability of managing 

 our research, motivated by a physical metaphor of edge 
organizations, we propose to treat edge organizations as self-organizing systems and attempt to 

SO model and develop better understanding of edge 
organizations.  

f agents. AAMAS'07. Honolulu, Hawaii: IFAAMAS. 

lberts, D. S. (1996). Information Age Transformation: Getting to a 21st Century Military. 
Washington, DC: CCRP Publications. 

gility, Focus, and Convergence: The Future of Command and Control. 
The International C2 Journal , 1 (1), 1-27. 

fMethods ■     (23) 

ndent variable, fundamental agility AglF is an 

5

control organizations. On the other hand, the advancement of information technology has created 
a technological environment in which such organizations can be enabled. Although sharing 
information among peers and pushing decision powers to the edge will likely make 

edge organizations is very limited. In

deepen our knowledge of edge organizations by clarifying the interplays of network structures, 
self-organizing mechanisms, and organization performance and agility with entropy as an 
intermediate variable. We developed an ESO (entropy and self-organizing) model of edge 
organizations in which basic concepts, simulation design, and various entropy, performance and 
agility measures are proposed. Our proposed ESO model integrates the perspectives and insights 
from organization theory, dynamic and complex systems, and edge organization research. The 
analysis of the model and evaluation measures has generated useful insights about the 
characteristics of edge organizations.  

Our ongoing research is focused on developing a multi-agent simulation framework based on the 
MASON platform. We are now in the process of designing simulation runs and create 
hypotheses testing plans. We have started to collaborate with ELICIT research group to make 
sure that the ESO simulation results will be comparable with ELICIT experiment data sets. It is 
expected that the insights gained from simulation studies and from comparisons with ELICIT 
will help us further improve the E
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