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ABSTRACT 

In this paper, multi-stage auction-based intelligence, surveillance, and reconnaissance 

(ISR) coordination mechanisms are investigated in the context of dynamic and uncertain 

mission environments, such as those faced by expeditionary strike groups. Each attribute 

of the mission task is modeled using a hidden Markov model (HMM) with controllable 

emission matrices, corresponding to each ISR asset.  For each HMM-sensor pair, we 

evaluate a matrix of information gains (uncertainty reduction measures); the elements of 

this matrix depend on the coordination structure and the concomitant delays accrued. We 

consider three coordination structures (distributed ISR coordination, ISR officer serving 

as a coordinator, ISR officer serving as a commander) here.  We evaluate these structures 

on a hypothetical mission scenario that requires the monitoring of ISR activities in 

multiple geographic regions. The three structures are evaluated by comparing the task 

state estimation error cost, as well as travel, waiting and assignment delays.  The results 

of analysis were used as a guide in the design of a mission scenario and asset composition 

for team-in-the-loop experimentation at NPS.  Our solution has the potential to be a 

mixed initiative decision support tool to an ISR coordinator/commander, where the 

human provides possible sensor-task pairings and the tool evaluates the efficacy of 

assignment in terms of task accuracy and delays.  

Keywords: Sensor scheduling, Sensor assignment, Hidden Markov model (HMM), 

Auction algorithm, Information gain heuristic, Coordination delays  

1. Introduction 

1.1. Motivation  

Complex surveillance applications, such as multi-target tracking and use of 

unmanned aerial vehicles (UAVs) for monitoring activities in remote or hostile 

environments, require one to trade off sensor performance (e.g., detection, identification, 

and tracking accuracies) and the sensor usage cost (e.g., power and bandwidth 

consumption, distance traveled, risk of exposure, deployment requirements). The 

objective of dynamic sensor scheduling is to judiciously allocate sensing resources to 
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exploit the individual sensors’ capabilities, while minimizing their usage cost. As an 

example, consider a target identification scenario where an incoming aircraft needs to be 

identified as an enemy or a friendly target using active or passive sensors available at a 

surveillance station. This scenario requires sensor scheduling because active sensors (e.g., 

radar) tend to reveal clues about the location of the surveillance station to a potential 

enemy aircraft, whereas the more stealthy passive sensors tend to be inaccurate.  Thus, in 

this case, the sensor scheduling algorithm needs to trade-off accuracy versus risk of 

exposure.  As another example, unmanned aerial vehicles (UAVs) are preferred assets for 

monitoring nearly all the intelligence, surveillance, and reconnaissance (ISR) activities; 

however, they cannot be deployed in large numbers due to their limited availability. 

Thus, astute allocation of scarce resources is a major issue in ISR coordination.  

In this paper, we develop analytic models of an expeditionary strike group (ESG) 

with different ISR coordination structures tasked with executing a surveillance mission.  

An ESG provides a flexible Navy-Marine force, capable of tailoring itself to a wide 

variety of missions. An important ESG mission involves dealing with asymmetric threats, 

such as terrorist groups who carry out attacks while trying to avoid direct confrontation. 

This stealthy behavior makes it very difficult to predict when and where they will strike. 

Moreover, the increased geographical range and unpredictable nature of this behavior 

require effective allocation and appropriate scheduling of sensors to achieve mission 

objectives. Effectively performing the ISR activities is a key step to gain situational 

awareness, which, in turn, enables the allocation of resources for the interdiction of 

asymmetric threats.  

We model the asymmetric threats using hidden Markov models (HMMs), because 

these activities are concealed and their true state can only be inferred through the 

uncertain observations obtained using various ISR sensors.  A pattern of these 

observations and its dynamic evolution over time provides the information base for 

inferring a potential realization of an asymmetric threat.  Thus, each state of a HMM is 

characterized by a set of attributes, and a sensor package consisting of a subset of sensors 

is needed to accurately estimate these attributes and, consequently, to infer the task state.  
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This is the type of problem considered by Hutchins et al. [12], where they have 

examined how an ESG with alternative structures and processes affect the decision 

performance and information flow in information-rich planning and execution 

environments according to the authority level of an ISR officer.   In this environment, 

operationalized in the Distributed Dynamic Decision-making (DDD-III) simulator, 

multiple tasks, each having multiple attributes (e.g., illegal weapon running, crowd 

behavior, and terrorist activities), need to be monitored.  For each task, multiple ISR 

assets, each having different capabilities to measure a subset of the task‘s attributes, need 

to be allocated to gain situational awareness.  The experiment has been designed to 

emphasize the (limited) ISR resources of the ESG, and participants are required to assign 

ISR sensors over time to learn the attributes of tasks for subsequent task processing.  The 

fact that subsets of sensors are needed to measure a task’s attributes leads to a non-

traditional, dynamic and many-to-one assignment (i.e., multiple sensors for a given task) 

problem.  No known solutions have been devised for this problem. 

In our previous work [24], assuming that any sensor can measure all the attributes of 

a task (i.e., one-to-one assignment problem), a hidden Markov model (HMM)-based 

dynamic sensor scheduling problem was formulated, and solved using information gain 

and rollout concepts to overcome the computational intractability of the dynamic 

programming recursion. The problem involves dynamically sequencing a set of sensors to 

monitor multiples tasks, which are modeled as multiple HMMs with multiple emission 

matrices corresponding to each of the sensors. The dynamic sequencing problem is to 

minimize the sum of sensor usage costs and the task state estimation error costs. The 

rollout information gain algorithm proposed in [24] employs the information gain 

heuristic as the base algorithm to solve the dynamic sensor sequencing problem. The 

information gain heuristic selects the best sensor assignment at each time epoch that 

maximizes the sum of information gains per unit sensor usage cost, subject to the 

assignment constraints that at most one sensor can be assigned to a HMM and that at 

most one HMM can be assigned to a sensor. The rollout strategy involves combining the 

information gain heuristic with the Jonker-Volgenant-Castañon (JVC) assignment 

4 



14th ICCRTS: C2 and Agility 

algorithm and a modified Murty’s algorithm to compute the -best assignments at each 

decision epoch of rollout. The capabilities of the rollout information gain algorithm were 

illustrated using a hypothetical scenario based on [12] to monitor intelligence, 

surveillance, and reconnaissance (ISR) activities in multiple fishing villages and refugee 

camps for the presence of weapons and terrorists or refugees. 

In this paper, motivated by the many-to-one assignment inherent in the ISR 

coordination problem [12], we extend the algorithms in [24] by proposing a three-phase 

approach for solving it.  During phase I, at each decision epoch, we compute M-best 

sensor packages for measuring the attributes of each task modeled as a HMM, where M is 

a user-specified parameter.  For Nt tasks and M sensor packages each, there will be at 

most MNt sensor packages.  However, these sensor packages may have overlapping 

sensors (i.e., same sensor in two different packages) when viewed across tasks.  In order 

to ensure that no sensor is allocated to more than one task at a decision epoch, we 

generate, during phase II of our solution approach, L disjoint sensor package sets over all 

tasks, where L again is a user parameter.  We accomplish this by solving a set packing 

problem, extended to generate L-best solutions. The result is L one-to-one assignment 

problems of allocating disjoint sensor packages to tasks.  Each of the L problems is 

similar to the one considered in [24].  However, one now needs to compute the 

information gain for a sensor package, rather than a single sensor.  The solution of L one-

to-one assignment problems constitutes the Phase III of our solution approach.   

Decomposing the original problem into three sequential subproblems overcomes the 

computational intractability of the dynamic many-to-one assignment problem.   

We evaluate the many-to-one assignment algorithm in terms of state estimation errors 

and delays using a realistic ISR scenario on the three coordination structures defined in 

[12]: self-synchronization, ISR officer as a coordinator, and ISR officer as a commander. 

In a self-synchronizing structure, decision makers (DMs), e.g., Sea Component 

Commander (SCC) and Marine Expeditionary Unit (MEU) Commander, take individual 

responsibility for assigning and coordinating ISR assets to the mission tasks.  

Communication channels among DMs are activated for exchanging information of 

unused assets and unassigned tasks so that DMs with excess assets can assist DMs with 
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scarce resources and yet are responsible for processing tasks.  This coordination is 

accomplished via a multi-step auction mechanism.  In the ISR commander structure, 

DMs provide lists of tasks, assets and information gains for each task-asset pair (i.e., 

efficacies of assigning an ISR asset to a task) to the ISR commander.  The ISR 

commander solves a centralized task-asset assignment problem and transmits his 

assignments to the subordinate DMs.  In the ISR coordinator structure, DMs solve their 

own individual task-asset assignment problems for their own tasks first. The ISR 

coordinator compares rewards of self-synchronization with that of a centralized structure. 

If the reward of ISR asset assignment using a self-synchronizing structure is less than a 

specified fraction of that accrued from a centralized assignment, the ISR coordinator 

recommends centralized task-asset assignments to the DMs. The value of the fraction 

enables us to model a number of coordination behaviors ranging from a fully-engaged 

coordinator to a hands-off coordinator.  

1.2. Previous Work 

A simplified version of the problem considered here is also related to the dynamic 

sensor scheduling problem; this problem has been widely studied in the area of target 

tracking [22], [6].  Mathematically, the problem is to solve a sequential stochastic 

allocation problem that seeks to minimize the expected scheduling cost under a given set 

of constraints over time [6].  For linear Gaussian state space systems, one can obtain an 

analytic solution for the posterior distribution of the system state given the sensor 

measurements and a sensor sequence via a Kalman filter [16]. Shakeri et al. [19] 

formulated the sensor scheduling problem subject to a fixed total budget and the cost of 

individual sensor varying inversely with its measurement variance. They obtained an 

optimal measurement schedule that minimizes the trace of a weighted sum of the 

estimation error covariance matrices of a discrete-time vector stochastic process, when 

the auto-correlation matrix of the process is given. The study showed that the problem 

can be transformed into a nonlinear programming problem with linear equality and 

inequality constraints. In the special case of a linear finite-dimensional stochastic system, 

they showed that the problem can be formulated as a nonlinear optimal control problem, 

where the gradient and Hessian of the objective function with respect to the sensor 
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accuracy parameters can be derived via a two-point boundary value problem. The 

resulting optimization problem was solved via a projected Newton Method [19].  

In [21], Singh et al. provided a summary of previous research on sensor scheduling 

for tracking targets, whose dynamics are modeled by linear Gauss-Markov processes. 

They formulated the sensor scheduling problem as one of minimizing the variance of the 

estimation error of hidden states of a continuous-time HMM with respect to a given 

action sequence [21]. The authors proposed a stochastic gradient algorithm to determine 

the optimal schedule for the HMM. Another effort, related to our work, using a discrete 

HMM framework was considered by Krishnamurthy in [14]. Here, the author proposed a 

stochastic dynamic programming (DP) framework to solve the sensor scheduling 

problem, which is intractable for all but simple HMMs with a few states (e.g., at most 15 

states).  

Sub-optimal approaches, based on information-theoretic criteria, have been developed 

for overcoming the computational intractability of determining the optimal sensor 

schedule. For a linear Gauss-Markov system, Logethitis et al. [15] formulated the sensor 

scheduling problem as one of determining a sequence of active sensors to maximize the 

mutual information between the states of the unobserved dynamic process and the 

observation process generated by the sensors. In the context of sensor networks, Zhao et 

al. [23] and Chu et al. [7] formulated the target tracking problem as a sequential Bayesian 

estimation problem, where the participants for sensor collaboration are determined by 

minimizing an objective function comprised of information utility e.g., measured in terms 

of entropy, Mahalanobis distance  and the sensor usage cost. 

1.3. Scope and Organization of the paper 

In section 2, the many-to-one sensor scheduling problem is formulated and solved 

using the three-phase approach.  In section 3, the scheduling model is adapted to the three 

coordination structures by including waiting, travel and coordination delays pertinent to 

each coordination structure. In section 4, we discuss how auction mechanisms are 

modeled for the three ISR coordination structures, viz., self-synchronization, ISR 
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Coordinator and ISR Commander.  In section 5, we apply our model to an ISR mission 

scenario and present the analysis results.  Finally, section 6 concludes with a summary. 

 

Figure.1. Many-to-one assignment problem  

2.  Dynamic Sensor Scheduling Problem and its Solution  

Consider a scenario with Nt discrete HMMs (representing tasks, r=1, 2, .., Nt) that are 

evolving independently, but are coupled via the sensor allocation policy.  This model is 

also known as a factorial hidden Markov model (FHMM) in the machine learning 

literature [11][24].   Each HMM state is characterized by a set of task attributes, and each 

sensor can measure certain of these attributes; this implies that multiple sensors may be 

needed to cover the attributes of a task state as shown in Fig.1.  Suppose there are Ns 

sensors, and ( ) {1,2,.., }sk N 

K | ( ) | (sk N

 are the set of available sensors at decision epoch 

.  Let {1,2,.., }k )k  denote cardinality of available sensors at decision 

epoch k.  We assume that a sensor package , l=1,2,..,M out of available 

sensors,

( )lrs k

( )k , that covers the attributes of the hidden state of a HMM, r is assigned at 

each time k.  Evidently, this is a many-to-one assignment problem.  The objective is to 

minimize the task state estimation error and sensor usage cost over all tasks for a 

specified planning horizon of K time epochs. 

We decompose the solution approach for the many-to-one assignment problem at 

each decision epoch into three sequential phases: M-best sensor package generation for 
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each task, L-best disjoint set generation via modified set packing that generates multiple 

solutions, and solving the resulting L one-to-one assignment problems using the 

algorithms in [24]. For simplicity of presentation, we omit the time index, k in sections 

2.1 and 2.2. The notation employed in this section is listed in Table 1. 

Let  
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Table.1. Summary of notation 

2.1 Phase I: Multiple sensor packages for each task 

Consider a task r.  Our objective is to generate M-best sensor packages of minimal 

cardinality that are capable of measuring all the attributes of task r, while minimizing the 

sum of travel costs of sensors in each sensor package from their current locations to the 

location of task r.   

  The problem of finding the best sensor package corresponds to the following binary 

programming problem (BPP), one for each task r:  
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Here the superscript (1) denotes the best solution to the BPP.  In addition, is the cost 

of moving sensor q from its current location to the location of task r.  This cost is 

computed via:  
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where and denote the Cartesian coordinates of the location of task r and the 

location of sensor q, respectively, and v denotes the velocity of sensor q  (or the mobile 

platform on which it is resident .)  In (1), the term 

( , )a b ( , )a b

M

r r q q

q

1
qr

q

C x

 is a penalty factor used to 

generate M-best sensor packages of minimal cardinality.  The coefficient C is selected 

such that .    max( )qr
q

C d

We employed a branch-and-bound algorithm for generating M-best solutions to the 

BPP in (1) by partitioning the space of feasible solutions such that the top j-best solutions 

are precluded when finding the ( 1)thj  best solution.  A simple and efficient method for 

partitioning the feasible space is to express each sensor package as a binary vector 

 ( ) ( ) ( )
1[ ,..., ,..., ], 1, 2

s

l l l
lr r qr N rs x x x l  ,.., .M

(1) Initialize rS  , constraints of (1) P , set of optimal costs H  .  

(2) Solve (1) to obtain optimal sensor package 1rs . If there is no feasible solution, 
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(5) Solve the two BPPs with iP  and gP as constraints, respectively.   If there is no 

feasible solution for both, stop.     If a candidate solution 
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1[ ,..., ,..., ( ) ]

s
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jr r qrs x x   Nx r is redundant (i.e., a superset of a previous best 
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solution), remove the solution, but add the corresponding constraints to the 

constrain set.  Set ( 1) ( ) , 1,...,j j
qr qr sx x q N  

| |
(1)

1

| |
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the costs { , }i gH H f f  and the corresponding sensor packages. Obtain 

the j

 



th best sensor package from H.  Set j=j+1 and go to step 3.  

2.2 Phase II: Multiple disjoint set generation from sensor packages 

For Nt tasks and M sensor packages each, there will be as many as MNt sensor 

packages.  However, these sensor packages may have sensor overlaps when viewed 

across tasks.  In order to ensure that no sensor is allocated to more than one task at a 

decision epoch, we generate, during phase II of our solution approach, L disjoint sensor 

package sets over all tasks, where L again is a user parameter.  To do this, we define a set 

of distinct sensor packages W by grouping all unique sensor packages without regard to 

HMMs from which such packages were obtained.  Then, the problem of obtaining a 

disjoint sensor set with maximum number of sensors can be formulated as a set packing 

problem (here superscript (1) denotes the best solution for the set packing problem): 

1,...

1,...,| |

sq N

u m

 

  W

L

                                  (3) 

The L-best solutions  to the set packing problem in (3) are obtained by 

combining the set packing algorithm, coupled with the branch-and-bound algorithm 

outlined earlier.    

2.3 Phase III: Sensor package assignment 

In this phase, we solve L assignment problems, one for each  .  The one-to-

one assignment problem of allocating a disjoint sensor package set, say , at 

decision epoch k to N

( )
1{ ( )}i

iD k 

( ) ( )iD k

t tasks at time k  is solved, subject to assignment constraints that 

each task is assigned no more than one sensor package and each sensor package is 
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assigned to no more than a single task.  The objective here is to maximize the sum of 

information gains (IG) at each time epoch k:  

( )
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                 (4) 

Here ( | -1)r k k is information state at decision epoch k based on all the observations 

up to and including time (k-1) [24].  The one-to-one assignment problem in (4) is 

solved using the JVC algorithm [13].      

3.  Including Delays into the HMM-based Sensor Scheduling Model 

When a DM (e.g., MEU, SCC, ISR officer) assigns a sensor package ( ) ( )lr rs k S k  to a 

task r at time epoch k, there will be a delay of ( ( ))C lrs k due to delays caused by 

assignment, travel, and waiting for a busy sensor to become available.  The net effect is 

that allocation decisions at time k results in a task attribute being measured at time 

epoch .  The delay time [ ( ( )C lrk s k  )] ( ( ))C lrs k  can be written as sum of the three 

constituent delays:  

( ( )) ( ) ( ( )) ( ) C lr C lr rs k k s k       k                                              (5) 

where  is the assignment delay, ( )C k ( ( ))lrs k  is the travel delay and ( )r k  is the waiting 

delay. 

3.1 Assignment delay  

The assignment delay  depends on the sensor allocation process, which in turn 

depends on the ISR coordination structure (Distributed (self-synchronization), ISR officer 

as a coordinator, ISR officer as a commander).  We model this delay as being comprised 

( )C k
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of two components: synchronization and coordination.  In the synchronization phase, 

DMs assign their available assets to their tasks first at time epoch k.  This can be done in 

parallel.  Consequently, it is reasonable to choose the maximum assignment delay among 

DMs as the synchronization delay. During the coordination phase, DMs exchange 

information on their unassigned tasks and unused assets among them. When there are 

available assets and unassigned tasks, a coordination delay of ( )k  is accrued.  Thus, 

( ) max( ( )) ( )C DMk k 
k                                                        (6) 

where and can be functions of available assets and unassigned tasks.   ( )DM k ( )k

3.2 Travel and waiting delays  

The travel delay  is the time it takes for an ISR asset qrd (lrq s )k  to reach the task’s 

location so that a measurement on the attribute of task r can be made.   This delay 

is given by Eq. (2).  Thus,    

( , )r ra b

( )
( ( )) max

lr
lr qr

q s k
s k


d                                                     (7) 

When one or more of the ISR assets is not available for assigning it to task r at time 

epoch k, the task needs to wait until the asset package becomes available.  This delay is 

the waiting delay , which can be computed by keeping track of the sensor 

availability status. 

( )r k

3.3 Including Delays in HMM State Propagation 

Suppose we assign the ISR asset package ( )lrs k  to HMM representing task r.  The 

measurement from this asset becomes available at time [ (C lrk s ( )k )]  .  The information 

state, ( | )r k k , is propagated up to time epoch [ ( ( ))]kC lk s r  via  

( ( )C s k ( | ) ( 1) ( 1| ); 1, 2,..., )T
r r r lrl k A l l k l k k k                                         (8) 

where  denotes the transition probability matrix of HMM r at time epoch (l-1). ( 1)rA l 

14 



14th ICCRTS: C2 and Agility 

 

Figure.2. Delay model combined with HMM sensor scheduling model 

 

At time epoch , the information state( ( ))C lrk s k  ( ( ( )) | ( (r C lr C lrk s k k s k)))      is updated 

by the measurement made by the assigned asset package ( )lrs k  :  

1

( ( ( ) | ( ( ))

( ( ( )) ( ( ( )) | )

( ( ( )) ( ( ( )) |
r

ri C lr C lr

rhil C lr ri C lr
n

rhil C lr ri C lr
i

k s k k s k

b k s k k s k k

b k s k k s k k







   

   


    )
                                 (9) 

Here, represents emission probability of observing element of emission matrix rhilb thh lrB , 

when observing the state of HMM r with sensor package thi thl ( )lr rs k S [24].   This process 

is shown in Fig.2, where we have assumed, for illustrative purposes, the sensor package 

to be comprised of a primary asset  and secondary assetpq sq , i.e., ( ) { , }lr p ss k q q  and 

( )rx k  represents the hidden state of HMM r at time epoch k.   
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4. Models for ISR Coordination Structures 

4.1 Distributed ISR coordination (Self-synchronization)  

A self-synchronizing structure has the attributes of distributed intelligence, diversity, 

self-organization, and lateral accountability [25].  In this structure, DMs communicate as 

peers; there are no fixed supervisor/subordinate relationships.  Coordination among DMs 

is realized by using a market mechanism, such as the ‘contract net protocol’ or the 

‘request for bid’ protocols, etc.  Some inherent capabilities of this structure include self-

configuration, flexibility, fault-tolerance, reduced complexity, and emergent behaviors 

[26].   

The distributed ISR coordination mechanism is modeled as a multi-stage auction as 

follows:  

1. Each DM solves his own ISR problem for his own mission tasks first via the 

auction algorithm.   

2. At the end of this phase, each DM broadcasts the availability of unused assets and 

any unassigned tasks (requiring assets) for which he is responsible. 

3. Each DM solves the resulting assignment problem.  

4. If all the tasks are assigned or there are no available assets, stop.  Else, go back to 

step 2.  

 

Evidently, the number of auction stages, i.e., information exchanges and assignment 

problems to be solved, is dynamic.  It depends on the number of tasks to be assigned, 

available assets, and the assumed delay models.    

4.2 ISR coordination by a Commander   

Traditional C2 hierarchy keeps authority and information at the center.  The control 

flow in this structure is typically top-down and the feedback information is bottom-up.  

The DMs at the upper level make asset allocations and coordinate lower level units, while 

DMs at the lowest level execute the tasks.  One of the many merits of a hierarchical C2 

structure is that it provides unity of command, which refers to the principle that a 
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subordinate should have one and only one superior to whom he or she is directly 

responsible.  Because military power is the product of multiple capabilities, a centralized 

C2, as an embodiment of the principle of unity of command, is essential to effectively 

fuse these capabilities.  

The ISR coordination by a commander is modeled as a single-stage auction.  This is 

because the ISR commander has the authority to control all the ISR assets (including his 

own) assigned to the mission.  The coordination process in this structure proceeds as 

follows: 

1. Each DM computes information gain for all tasks when his assets are assigned to 

them.  

2. Each DM provides the list of tasks, assets and information gain data to the 

commander. 

3. Commander solves the centralized assignment problem via the auction or the JVC 

algorithm. 

4.3  ISR coordination by a Coordinator   

The ISR coordinator does not own assets, but facilitates information flow and 

effective planning.  We model the coordinator structure as an intermediate between a 

self-synchronizing and commander structures.  Specifically, when the sum of information 

gains obtained by the distributed ISR coordination structure is not substantially less than 

that of the centralized (commander-derived) solution, the ISR coordinator does not 

intervene; otherwise, the coordinator suggests the implementation of a centralized 

solution to the DMs involved in mission planning and execution. Formally, if 

( )

( )

( )| |
*

1 1

( )| |
*

1 1

( ) ( )
 >

( ) ( )

Dis
t

Com
t

N kD
Dis

rn rn
n r

N kD
Com

rn rn
n r

I k k

I k k


 



 

 

 

 
                                                 (10) 

where  is the asset assignment under an ISR commander structure and is 

the asset assignment of a self-synchronizing structure at time epoch k.  When the 

* ( )Com
rn k * ( )Dis

rn k
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threshold  0  , the coordinator does not intervene.   On the other hand, when  1  , the 

coordinator acts like an ISR commander.   Thus, the threshold parameter   enables us to 

model a number of coordination behaviors ranging from a fully-engaged coordinator to a 

hands-off coordinator.  

5. Computational Results 

5.1 A Hypothetical Mission Scenario  

This scenario, motivated by ESG missions, involves simultaneous monitoring of 

multiple geographically dispersed threat activities.  Here, an ISR officer needs to 

dynamically allocate sensors to monitor asymmetric threat activities in a notional area 

(e.g. fishing villages, refugee camps) that involves primarily two fictitious countries, 

Asiland and Bartola [12].  Asiland is an unstable state, where maritime smugglers and 

anti-western terrorist groups have supported the insurgent factions hostile to the 

government of Bartola.  Local terrorists and sea rovers use Asiland’s as a base.  The 

scenario considers that nearly a month ago, the northern shore of Asiland was struck by a 

tsunami that destroyed several fishing villages and caused enormous casualties. Large 

numbers of Asiland citizens sought refuge in south for help and assistance.  However, 

this exodus quickly drained the resources of Asiland.  Consequently, many Asiland 

refugees began to move to fishing villages and refugee camps in Bartola. Within a few 

days, insurgents and terrorist factions in and around Asiland began to exploit the 

situation, infiltrating their operations into Bartola by disguising as refugees and 

smuggling weapons onboard fishing boats and merchant ships.  Bartola’s military was 

overwhelmed with controlling massive influx of refugee boats, as well as tracking the 

terrorist/insurgent’s activities using these boats and ships for illegal transfers.  The 

government of Bartola sought help from the United States to provide Humanitarian 

Assistance/Disaster Relief (HA/DR) to Bartola and the organizations operating relief 

activities within it.  The ESG sensor assets are deployed and begin to monitor 

strategically significant areas (e.g. major sea and air lanes as well as several major ports, 

villages, refugee camps, roads, and cities/sites) as shown in Fig. 3.  
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Figure.3. Notional area for scenario development 

5.2 Delay and Cost Models 

The assignment delay for the distributed ISR structure is computed as follows: 

( ) ( )( ) (max( ( ) ( )) ) ( ( ) ( ))C s DM t DM sk N k N k U k Ut k 
 

                                 (11)      

where  is a structural delay factor, is the number of  available assets (sensors) 

and  is the number of tasks that 

( )sDMN k

DM( )ktDMN  is responsible for at time epoch k.   Here, we 

refer to  as a delay factor for coordination between DMs.  Here,  is the number of 

available (unassigned) assets and is the number of unassigned tasks after ISR asset 

assignment of synchronization phase.   

( )sU k

( )U kt

  is used as a coordination delay model 

parameter. Similarly, the assignment delay for the ISR commander structure is set as 

follows:    

( ) ( ( ) ( ))C s tk N k N k                                                            (12)      
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where sN  is the total number of available assets and is the total number of tasks at time 

epoch k.  Cost for sensor assignment and information state update is not considered in 

this experiment.  The estimation error per completed task is computed as follows: 

tN

1 1

1
( ( | )) [1 ( / ) ( / )]

Completed tasks

N K
T

r r
r k

J k k k k k k 
 

 Π                                (13) 

5.3 Pre-experiment Analysis for Selecting Assets for Experimentation 

The dynamic sensor scheduling model was used as a guide in the design of a mission 

scenario and asset composition for A2C2 team-in-the-loop experiment 11 at NPS.  The 

purpose of Experiment 11 was to investigate whether coordination structures make a 

difference in resource scarce environments.  The purpose of this pre-experiment analysis  

Tasks 
as HMMs

L
ay

o
u

t o
f E

S
G

 S
ce

n
ario

L
ay

o
u

t o
f E

S
G

 S
ce

n
ario

IS
R

 o
rg

an
izatio

n
a

l
IS

R
 o

rg
an

izatio
n

a
l

stru
ctu

re
stru

ctu
re

Execution DM

Planning DM

SCC

MEU
ESG 
ESG ISR

Communication
Channels 

Planning Execution 

Model

Auction-based 
ISR coordination 

Mechanisms

Model

Analysis of
ISR Coordination 

mechanisms

Measurement 
effectiveness

PredictionPrediction

Resource Utilization 

Task Completion 

Workload 
Distribution 

 
Figure.4. ESG Pre-experiment Analysis using Model-based Approach 

 

was to evaluate the performance of the three coordination structure on the ISR mission 

scenario in [12] with the asset packages shown in Table 4.  Here, the baseline asset 

package S0 corresponds to the same as that used in [12], while scenarios S1-S6 

correspond to progressively reduced asset packages.  The assets have different speeds, 

and measurement ranges, as shown Table 2.  We assume that each asset can measure a 

single attribute.  Asset measurement capabilities for task classes are as shown in Table 3, 

where blue color represents attributes of task classes that assets can monitor.  The ISR 
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assets need to measure 84 task attributes, which are modeled as 84 HMMs.  The 

structural delay  

 

Table.2. Velocities and measurement ranges of assets 

 

 

Table.3. Asset-task capability table 
 

factor  is set as 0.01, and the coordination delay parameter  is set as 0.01, and the 

threshold   is set as 0.5, and the coordination delay model parameter  is set as 1/2.  We 

specify the transition probability matrix for each HMM based on task arrival patterns 

specified in the DDD mission scenario definition file [12], [24].     The emission matrices 

are set by considering asset measurement capabilities for various task classes.  The 

mission in notional area consists of ground tasks (e.g. fishing village, refugee camp, 

medical facility, building, truck convoy, and ground patrol) and maritime tasks (e.g. 

fishing boat, oil tanker, merchant ship, and patrol boat).  In this scenario, MEU has the 

responsibility for monitoring the ground tasks, while SCC has the responsibility for 

21 



14th ICCRTS: C2 and Agility 

monitoring the maritime tasks.  The total DDD simulation time for this mission scenario 

was 90 minutes, which corresponded to 18 hours of actual mission operation.  We used a 

sampling interval of 1 minute so that the number of time epochs K = 90.  The tasks need 

to be monitored periodically for persistent surveillance every 15 minutes. We model this 

by reintroducing a completed ISR task as a new arrival after 10 time epochs so that this 

task is revisited for persistent surveillance.  We ran the simulations for the seven asset 

availability scenarios shown in Table 4.  The model was used to compute a number of 

performance measures, including the number of tasks completed, cumulative task state 

estimation error, delay per completed task, and the asset utilization rates under the three 

coordination structures for the seven scenarios.   

 

Table.4. Asset Availability Scenarios 

 

Figs. 5-8 display these metrics.  The results suggest that the ISR commander structure has 

better performance than the other two ISR structures.  In addition, as the number of assets 

decreases, the state estimation error per task and the delay per task in all ISR structures 

tend to increase.  Another point to note is that team performance under asset package 

scenario S6 degrades significantly compared to the other scenarios, as shown in the Fig. 

5-8.   We can infer the reason from Fig. 7 where the waiting delay significantly increases. 

This implies that the number of ISR assets may not be adequate to handle the mission 

scenario, because the workload of each ISR asset tends to increase as shown in Fig. 8. 

This also shows that UAV and MSPF are bottleneck resources.  Experiment 11 was run 
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under asset scenario S5 at NPS.  After action reviews from human teams revealed that 

UAVs and MSPFs are indeed the bottleneck resources. 

 

 

Figure.5. Number of Completed tasks for the three ISR coordination structures 

 

 

Figure.6. Estimation error per completed tasks of three ISR organizational structures  
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Figure.7. Delay per completed task of three ISR organizational str es  uctur

 

 

Figure.8. Asset usage rate for scenario S0 and S6 

es.  The scheduling model was applied 

rious ISR coordination mechanisms was evaluated by comparing the 

 The analytic 

 to systematically 

6. Conclusions  

This paper formulated the sensor scheduling problem using factorial HMM 

formalisms for various ISR coordination structur

to a realistic mission scenario to analyze different assert availability scenarios.  The 

performance of va

state estimation error cost, as well as travel, waiting and assignment delays. 

model developed in this paper provides a quantitative framework

24 



14th ICCRTS: C2 and Agility 

analyze a number of organizational issues.  For example, our modeling framework can be 

used to study: 

ond to major disturbances (e.g., asset breakdowns, 

re? 

ructure exhibit chaotic behaviors? 

 technique occurring 

 Journal on 

pplication, vol. 1, pp. 7-66, 1992. 

Vision and Pattern 

fficient algorithm Implementation for Target 

, vol. 16, pp. 293-313, 2002. 

 Does the structure facilitate adaptation in the face of novel situations? 

 How fast does the structure resp

DM failures, changes in task workload)?  

 How does information flow in the structu

 How does absence of global information in the self-synchronizing structure impact its 

performance? 

 How do coordination protocols impact a structure’s decision processes? 

 Under what conditions does a st

These and other issues are under continuing investigation. 
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