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Definition of a SystemDefinition of a System
• SystemSystem

– ““A combination of interacting elements organized to achieve A combination of interacting elements organized to achieve 
one or more stated purposes” [INCOSE, 2006]one or more stated purposes” [INCOSE, 2006]

– A collection of elements that, in combination, produce results A collection of elements that, in combination, produce results 
generally not obtainable by the elements acting alonegenerally not obtainable by the elements acting alone
• Elements: Operators, hardware, software, firmware, Elements: Operators, hardware, software, firmware, 

information, policies, documents, techniques, facilities, information, policies, documents, techniques, facilities, 
services, and other support componentsservices, and other support components

– All items required to produce system-level resultsAll items required to produce system-level results
• System-level results: Qualities, properties, characteristics, System-level results: Qualities, properties, characteristics, 

functions, behaviors, and performance of the entire systemfunctions, behaviors, and performance of the entire system

A system produces a desired behavior beyond the capacity of any A system produces a desired behavior beyond the capacity of any 
individual system element or subgroup of system elementsindividual system element or subgroup of system elements
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Classification of SystemsClassification of Systems
• Main CategoryMain Category

– NaturalNatural
• May not have an apparent objectiveMay not have an apparent objective
• System inputs and outputs can be interpreted as serving a purposeSystem inputs and outputs can be interpreted as serving a purpose

– Artificial (or Man-made)Artificial (or Man-made)
• Designed for a specific purposeDesigned for a specific purpose
• Achieved through the delivery of outputs or servicesAchieved through the delivery of outputs or services

• SubcategorySubcategory
– ObservableObservable

• System inputs and outputs may be directly perceived in real-timeSystem inputs and outputs may be directly perceived in real-time
– Non-observableNon-observable

• Either or both the system inputs and outputs may not be directly Either or both the system inputs and outputs may not be directly 
observedobserved

• Method of AnalysisMethod of Analysis
– QualitativeQualitative

• Delivery of the outputsDelivery of the outputs
– QuantitativeQuantitative

• Measurement and analysis of specific system performance and Measurement and analysis of specific system performance and 
effectiveness metrics derived from the system outputseffectiveness metrics derived from the system outputs
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Definition of an EventDefinition of an Event
• Event: A significant occurrence or large-scale activity that is unusual Event: A significant occurrence or large-scale activity that is unusual 

relative to normal patterns of behavior. May be associated with relative to normal patterns of behavior. May be associated with 
naturally occurring phenomena and manual system interactions.naturally occurring phenomena and manual system interactions.
– Naturally occurring phenomenaNaturally occurring phenomena

• e.g., Chemical and thermodynamic reactions and physical processese.g., Chemical and thermodynamic reactions and physical processes
– Manual system interactionManual system interaction

• e.g., An operator pushing a buttone.g., An operator pushing a button
• An event results in the aberration of system parameters and output An event results in the aberration of system parameters and output 

metricsmetrics
• Examples of events [Ihler, Hutchins, and Smyth, 2006]Examples of events [Ihler, Hutchins, and Smyth, 2006]

– A large meeting in an office buildingA large meeting in an office building
– A malicious attack on a Web serverA malicious attack on a Web server
– A traffic accident on a freewayA traffic accident on a freeway

Events are identified through a process known as “event detection”Events are identified through a process known as “event detection”
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Event DetectionEvent Detection

• Observable systemsObservable systems
– Direct observation of the system statesDirect observation of the system states
– e.g., Looking outside to see if it is raininge.g., Looking outside to see if it is raining

• Non-observable systemsNon-observable systems
– Sensors track the states of the parameters of interestSensors track the states of the parameters of interest
– e.g., Using a thermometer to see if the outside temperature is e.g., Using a thermometer to see if the outside temperature is 

below freezingbelow freezing
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Sensor EmploymentSensor Employment
• SensorsSensors

– Organic (to the detection platform)Organic (to the detection platform)
– LocalLocal
– RemoteRemote
– Any combination of theseAny combination of these

• Sensor outputs are inputs to event detection systemsSensor outputs are inputs to event detection systems
• Regardless of the system, sensor-based event detection is Regardless of the system, sensor-based event detection is 

among the most difficult and time-constrained of analysis among the most difficult and time-constrained of analysis 
problemsproblems
– Requires excessive computational powerRequires excessive computational power
– Consumes large amounts of storage space for voluminous dataConsumes large amounts of storage space for voluminous data

• Example events detected using sensor-based event detectionExample events detected using sensor-based event detection
– A substantial change in sea levelA substantial change in sea level
– An increase in background radiation levelAn increase in background radiation level
– The maneuver (or course change) of an anti-ship missileThe maneuver (or course change) of an anti-ship missile
– An increase in pressure within a boiler (or heat exchanger)An increase in pressure within a boiler (or heat exchanger)
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Static Threshold Event DetectionStatic Threshold Event Detection

• Various methods of sensor-based event detection Various methods of sensor-based event detection 
existexist

• Static threshold event detection is one of the Static threshold event detection is one of the 
simplest and most commonsimplest and most common
– e.g., Automobile fuel level sensore.g., Automobile fuel level sensor

• Simple method, but typically less reliable than more Simple method, but typically less reliable than more 
advanced techniquesadvanced techniques
– e.g., What if the automobile fuel level sensor fails?e.g., What if the automobile fuel level sensor fails?
– Many systems employ multiple (or redundant) sensors to Many systems employ multiple (or redundant) sensors to 

overcome the reliability issues associated with a single overcome the reliability issues associated with a single 
sensorsensor
• Add complexity to the event detection problem since multiple Add complexity to the event detection problem since multiple 

inputs must be evaluated in order to determine whether or not inputs must be evaluated in order to determine whether or not 
an event is transpiringan event is transpiring
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Research GoalsResearch Goals

• Introduce the most common difficulties and Introduce the most common difficulties and 
challenges in event detection problemschallenges in event detection problems

• Describe the event detection methods most Describe the event detection methods most 
frequently employedfrequently employed

• Provide example event detection applicationsProvide example event detection applications
• Explore the relationship between event detection and Explore the relationship between event detection and 

modeling and simulationmodeling and simulation

This presentation incorporates the discoveries of and This presentation incorporates the discoveries of and 
lessons learned by multiple researchers and authors lessons learned by multiple researchers and authors 
over many combined years of experience in event over many combined years of experience in event 
detection theory and applicationdetection theory and application

This rather broad study has never been previously This rather broad study has never been previously 
published within a single volumepublished within a single volume
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COMMON CHALLENGES INCOMMON CHALLENGES IN
EVENT DETECTIONEVENT DETECTION



12© 2009 Lockheed Martin MS2

Situational DependenceSituational Dependence

• Event detection problems are extremely situationally-Event detection problems are extremely situationally-
dependentdependent

• Several problems may be similar, but no two Several problems may be similar, but no two 
problems are ever exactly the sameproblems are ever exactly the same
– Parameters, variables, and output metrics are selected based Parameters, variables, and output metrics are selected based 

upon the specific event detection problemupon the specific event detection problem
– Artifacts may or may not be applicable to other problems Artifacts may or may not be applicable to other problems 

within the same domain, even for very closely-related within the same domain, even for very closely-related 
problemsproblems

Approach in one domain may inspire alternative methodsApproach in one domain may inspire alternative methods
within other domainswithin other domains
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Criticality of ApplicationCriticality of Application
• Problems often address the requirements of a critical Problems often address the requirements of a critical 

applicationapplication
• e.g., Monitoring critical assets, measuring indicators of e.g., Monitoring critical assets, measuring indicators of 

imminent catastrophic machine failures, detecting breaches imminent catastrophic machine failures, detecting breaches 
within security perimeters, and observing human vital signswithin security perimeters, and observing human vital signs

• Require high precision and extreme timelinesRequire high precision and extreme timelines
– High precision: A high true positive (i.e., correct detection) rate and High precision: A high true positive (i.e., correct detection) rate and 

a low false positive (i.e., incorrect detection) ratea low false positive (i.e., incorrect detection) rate
– Extreme timeline: A very short period of time in which the event Extreme timeline: A very short period of time in which the event 

detection method is able to correctly identify eventsdetection method is able to correctly identify events
• May range from less than a second to several minutes in duration May range from less than a second to several minutes in duration 

(application dependent)(application dependent)

Event detection method must operate in real-time and fast enough to address Event detection method must operate in real-time and fast enough to address 
the criticality of the application so that the detection report is not too time-late the criticality of the application so that the detection report is not too time-late 

for an action or reaction to occurfor an action or reaction to occur
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Numerous and Diverse Data SourcesNumerous and Diverse Data Sources
• Any single event detection problem may consider a variety of diverse Any single event detection problem may consider a variety of diverse 

data sources with different data types and formatsdata sources with different data types and formats
– Digital revolution exploded the number of data sources and amount of data Digital revolution exploded the number of data sources and amount of data 

readily availablereadily available
– Problem is compounded in assessing what data is actually relevant and Problem is compounded in assessing what data is actually relevant and 

approach must be capable of evaluating data from selected sourcesapproach must be capable of evaluating data from selected sources
• Data must be aggregated, converted, or reformatted into a uniform structure that is Data must be aggregated, converted, or reformatted into a uniform structure that is 

independent of the data sourceindependent of the data source
• Enormous volumes of data, often measuring in terabytesEnormous volumes of data, often measuring in terabytes

– Requires high-powered computing machinery and immense digital storage Requires high-powered computing machinery and immense digital storage 
spacespace

• Size of data setSize of data set
– Too little data can lead to missed detections or the development of an event Too little data can lead to missed detections or the development of an event 

detection solution which does not work in all casesdetection solution which does not work in all cases
– Too much data can lead to “analysis paralysis”Too much data can lead to “analysis paralysis”

• Detection problem is over-analyzed and never really solvedDetection problem is over-analyzed and never really solved
• Raw sensor dataRaw sensor data

– Often plagued by inaccuracies and incompletenessOften plagued by inaccuracies and incompleteness
• Inaccurate or missing position informationInaccurate or missing position information
• Delayed or out-of-order arrivals at receiving stationDelayed or out-of-order arrivals at receiving station

– May exhibit cyclical, seasonal, and irregular trendsMay exhibit cyclical, seasonal, and irregular trends
– Often corrupted by a number of “burst” periods of atypical or unusual Often corrupted by a number of “burst” periods of atypical or unusual 

behaviorbehavior
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Network TopologyNetwork Topology
• Network: A system containing a number of transmitting and receiving sensor Network: A system containing a number of transmitting and receiving sensor 

stations, or nodes, that are connected through cables, wires, or wireless stations, or nodes, that are connected through cables, wires, or wireless 
communications mediumcommunications medium

• Network topology considers the locations and connectivity of these sensors in Network topology considers the locations and connectivity of these sensors in 
relation to the entire sensor network over timerelation to the entire sensor network over time

– In remote and mobile sensor networks, the network topology changes continuously In remote and mobile sensor networks, the network topology changes continuously 
due to sensor mobility and sensor lifetimedue to sensor mobility and sensor lifetime

• Care and maintenance of the sensor networkCare and maintenance of the sensor network
– Motes, or remote sensor nodes within a wireless sensor network, require maintenance Motes, or remote sensor nodes within a wireless sensor network, require maintenance 

and reseeding due to movement outside of the intended observed area, power and reseeding due to movement outside of the intended observed area, power 
consumption, sensor failures, and finite sensor lifetimesconsumption, sensor failures, and finite sensor lifetimes

• Network throughput and capacityNetwork throughput and capacity
– Aggregated dataAggregated data

• Increases network throughput and reduces data processing times, but can significantly reduce Increases network throughput and reduces data processing times, but can significantly reduce 
the chance of detection since data from unaffected areas can mask the event signaturethe chance of detection since data from unaffected areas can mask the event signature

• Detection system takes longer to notice the slight change in the aggregated dataDetection system takes longer to notice the slight change in the aggregated data
– Localized, sensor-level dataLocalized, sensor-level data

• Improves detection sensitivity, but processing time for larger volumes of data can affect Improves detection sensitivity, but processing time for larger volumes of data can affect 
timeliness of detectiontimeliness of detection

• Other considerationsOther considerations
– Event persistence: The number of positive sensor detections required (from the same Event persistence: The number of positive sensor detections required (from the same 

sensor) in order to report the occurrence of an eventsensor) in order to report the occurrence of an event
– Event lifetime: The length of an event as determined by the event persistence algorithm Event lifetime: The length of an event as determined by the event persistence algorithm 

in signaling the start and end of the eventin signaling the start and end of the event
– Context fluttering: An event indication is activated and deactivated in close succession Context fluttering: An event indication is activated and deactivated in close succession 

due to inaccurate sensor readings or network delaysdue to inaccurate sensor readings or network delays
• Sensor hunting: Activation and deactivation in close succession due to errors in a single sensorSensor hunting: Activation and deactivation in close succession due to errors in a single sensor
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Event Detection AlgorithmsEvent Detection Algorithms
• Three main requirements: Timeliness, a high true detection rate, and a low false alarm rateThree main requirements: Timeliness, a high true detection rate, and a low false alarm rate
• TimelinessTimeliness

– Implies immediate analysis of incoming data and immediate reporting of the resultsImplies immediate analysis of incoming data and immediate reporting of the results
– Fast storage and analysis are criticalFast storage and analysis are critical
– Detection algorithm must be efficient (i.e., fast and computationally cheap)Detection algorithm must be efficient (i.e., fast and computationally cheap)
– May give priority to some solution approaches over othersMay give priority to some solution approaches over others

• Initialization, learning, and stabilization timesInitialization, learning, and stabilization times
– Time for the algorithm parameters to properly initialize, learn from the event-free environment, and Time for the algorithm parameters to properly initialize, learn from the event-free environment, and 

then reach a stable statethen reach a stable state
– Preliminary (learning) data for the algorithm must be known to be void of the events of interestPreliminary (learning) data for the algorithm must be known to be void of the events of interest
– Detection system “learns” to detect the event based upon the event-free situationDetection system “learns” to detect the event based upon the event-free situation
– DisadvantageDisadvantage

• A “day zero” event: An event which is uncharacteristic of the normal events and has a never-seen-before signatureA “day zero” event: An event which is uncharacteristic of the normal events and has a never-seen-before signature
• Detection algorithm has no means to detect a “day zero” event, as the algorithm is not actively “looking” for itDetection algorithm has no means to detect a “day zero” event, as the algorithm is not actively “looking” for it

•  “ “Roll-forward” approachRoll-forward” approach
– Each new data point is assessed for the indication of an event as it is added to the data setEach new data point is assessed for the indication of an event as it is added to the data set
– Detection system should output an operational decision-making conclusion upon completion of the Detection system should output an operational decision-making conclusion upon completion of the 

analysis  analysis  
• Precision vs. Recall trade-offPrecision vs. Recall trade-off

– Precision: The fraction of reported events that are actual (true) eventsPrecision: The fraction of reported events that are actual (true) events
– Recall: The fraction of all events that are reported correctlyRecall: The fraction of all events that are reported correctly
– In a pessimistic approach, the algorithm ignores large numbers of (potential) events due to the data In a pessimistic approach, the algorithm ignores large numbers of (potential) events due to the data 

uncertaintyuncertainty
• Precision is high, but many actual events are missed, reducing the recall valuePrecision is high, but many actual events are missed, reducing the recall value

– In the optimistic approach, events are reported even in the presence of uncertain dataIn the optimistic approach, events are reported even in the presence of uncertain data
• Precision is lower since the errors in the input data result in false events, but the recall value is higher since fewer Precision is lower since the errors in the input data result in false events, but the recall value is higher since fewer 

true events are missedtrue events are missed
• Active adversaryActive adversary

– Many event detection problems are exacerbated by the presence of an active adversaryMany event detection problems are exacerbated by the presence of an active adversary
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TYPICAL EVENT DETECTION TYPICAL EVENT DETECTION 
METHODSMETHODS
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Event Detection MethodsEvent Detection Methods
• No clear manner in which to characterize No clear manner in which to characterize 

every event detection methodevery event detection method
• Typical event detection methods may be Typical event detection methods may be 

classified into four rather broad categoriesclassified into four rather broad categories
– StatisticalStatistical
– ProbabilisticProbabilistic
– Artificial Intelligence and Machine LearningArtificial Intelligence and Machine Learning
– CompositeComposite
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Statistical Methods (1 of 2)Statistical Methods (1 of 2)
• Static threshold methodStatic threshold method

– Simplest and most computationally straight-forwardSimplest and most computationally straight-forward
– Detections are reported when the monitored parameter exceeds a predetermined Detections are reported when the monitored parameter exceeds a predetermined 

threshold valuethreshold value
– Detection condition persists as long as the parameter value exceeds the threshold Detection condition persists as long as the parameter value exceeds the threshold 

set pointset point
– Threshold values may be determined based upon historical parameter values, Threshold values may be determined based upon historical parameter values, 

analogy to similar sensors and systems, engineering estimates, or parametric analogy to similar sensors and systems, engineering estimates, or parametric 
analysisanalysis

• RegressionRegression
– A data modeling and analysis technique in which the dependent variable is modeled A data modeling and analysis technique in which the dependent variable is modeled 

as a function of independent variables, constant parameters, and an error termas a function of independent variables, constant parameters, and an error term
• Error term represents the variation in the dependent variable that cannot be explained by Error term represents the variation in the dependent variable that cannot be explained by 

the modelthe model
– Linear regressionLinear regression

• Models the relationship between the dependent and independent variables as a straight lineModels the relationship between the dependent and independent variables as a straight line
– Polynomial regressionPolynomial regression

• Models the relationship between the dependent and independent variables as a polynomialModels the relationship between the dependent and independent variables as a polynomial
– LOESS regression LOESS regression 

• Locally weighted regressionLocally weighted regression
• Fits a regression surface to data by multivariate smoothingFits a regression surface to data by multivariate smoothing

– Simple models are fit to local subsets of dataSimple models are fit to local subsets of data
– Quantile regression Quantile regression 

• Estimates models for any of the conditional quantiles by minimizing sums of absolute Estimates models for any of the conditional quantiles by minimizing sums of absolute 
residualsresiduals

• Provides a more complete statistical analysis of the stochastic relationships among random Provides a more complete statistical analysis of the stochastic relationships among random 
variablesvariables
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Statistical Methods (2 of 2)Statistical Methods (2 of 2)
• Time series analysisTime series analysis

– Time series: A sequence of successive data points typically separated by a Time series: A sequence of successive data points typically separated by a 
uniform time intervaluniform time interval

– Three broad model classesThree broad model classes
• Autoregressive (AR)Autoregressive (AR)
• Integrated (I)Integrated (I)
• Moving average (MA)Moving average (MA)

– Composite modelsComposite models
• Autoregressive moving average (ARMA)Autoregressive moving average (ARMA)
• Autoregressive integrated moving average (ARIMA)Autoregressive integrated moving average (ARIMA)

• Kalman filterKalman filter
– An efficient recursive filter that estimates the state of a dynamic system An efficient recursive filter that estimates the state of a dynamic system 

from a series of incomplete and noisy measurementsfrom a series of incomplete and noisy measurements
• Model fitting interpolationModel fitting interpolation

– Interpolate values at intermediate pointsInterpolate values at intermediate points
– e.g., use the bicubic technique to interpolate the value at a point as the e.g., use the bicubic technique to interpolate the value at a point as the 

weighted average of its nearest sixteen neighbor pointsweighted average of its nearest sixteen neighbor points
• Principal Component Analysis (PCA)Principal Component Analysis (PCA)

– Also known as the Karhunen-Loève transform (KLT)Also known as the Karhunen-Loève transform (KLT)
– Uses singular value decomposition (SVD) to reduce high-dimensional Uses singular value decomposition (SVD) to reduce high-dimensional 

datasets into datasets with lower dimensions that approximate the original datasets into datasets with lower dimensions that approximate the original 
datadata
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Probabilistic MethodsProbabilistic Methods
• Techniques in which the probability of event occurrence and other Techniques in which the probability of event occurrence and other 

related probabilities and parameters are computed and assessed rather related probabilities and parameters are computed and assessed rather 
than computing and testing statistics from a sample data setthan computing and testing statistics from a sample data set

• Time-varying Poisson process modelTime-varying Poisson process model
– Adaptively separates unusual event plumes from normal activityAdaptively separates unusual event plumes from normal activity
– Accounts for anomalous eventsAccounts for anomalous events
– Outperforms the static threshold-based event detection techniqueOutperforms the static threshold-based event detection technique

• Distributed Gaussian Method (DGM) Distributed Gaussian Method (DGM) 
– Generates Gaussian curves centered on each nodeGenerates Gaussian curves centered on each node
– Curves are normalized and summed to reduce the geometric effect of node Curves are normalized and summed to reduce the geometric effect of node 

placementplacement
– Maximum value is then easily locatedMaximum value is then easily located

• SensorGrid [Tham, 2006]SensorGrid [Tham, 2006]
– An architecture for integrating sensor networks with grid computingAn architecture for integrating sensor networks with grid computing
– Grid computing involves groups of heterogeneous computational servers Grid computing involves groups of heterogeneous computational servers 

connected via high-speed network connectionsconnected via high-speed network connections
– Real-time information is mined, extracted, correlated, and processed to Real-time information is mined, extracted, correlated, and processed to 

facilitate “on-the-fly” decisions and actionsfacilitate “on-the-fly” decisions and actions
– Architecture relies upon distributed data fusion, event detection, and Architecture relies upon distributed data fusion, event detection, and 

classification via probabilistic algorithmsclassification via probabilistic algorithms
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Artificial Intelligence andArtificial Intelligence and
Machine Learning MethodsMachine Learning Methods
• Usually both computationally and informationally intensiveUsually both computationally and informationally intensive
• Sensor sources are often sparsely distributed in time and spaceSensor sources are often sparsely distributed in time and space

– Require advanced fusion algorithms to correlate the data from Require advanced fusion algorithms to correlate the data from 
multiple sourcesmultiple sources

• Database operationsDatabase operations
– The most direct of these methodsThe most direct of these methods
– Includes database queries and table joinsIncludes database queries and table joins

• Mote Fuzzy Validation and Fusion (Mote-FVF)Mote Fuzzy Validation and Fusion (Mote-FVF)
– Developed for wireless sensors networkDeveloped for wireless sensors network
– Can distinguish between sensor failures and abnormal Can distinguish between sensor failures and abnormal 

environmental behaviors by using network redundancy to environmental behaviors by using network redundancy to 
compensate for sensor reliabilitycompensate for sensor reliability

– Does not require or rely upon a mathematical model of the systemDoes not require or rely upon a mathematical model of the system
• Particle filteringParticle filtering
• Genetic algorithmsGenetic algorithms
• Neural networksNeural networks
• Intelligent agentsIntelligent agents
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Composite MethodsComposite Methods
• Those methods that combine techniques Those methods that combine techniques 

within a category or from two or more of the within a category or from two or more of the 
categoriescategories

• Bayesian Gaussian Process (BGP) modelsBayesian Gaussian Process (BGP) models
– Combine probabilistic and machine learning Combine probabilistic and machine learning 

methodsmethods
– Powerful non-parametric learning methods based Powerful non-parametric learning methods based 

on simple probabilistic modelson simple probabilistic models
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EXAMPLE EVENT DETECTION EXAMPLE EVENT DETECTION 
APPLICATIONSAPPLICATIONS
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Network MonitoringNetwork Monitoring
• Monitoring Internet connections and Monitoring Internet connections and 

conducting Web access loggingconducting Web access logging
– Frequency of visits to websitesFrequency of visits to websites
– General geographic locations of website visitorsGeneral geographic locations of website visitors
– Internet usage by employeesInternet usage by employees
– Security of online systemsSecurity of online systems

• Website intrusion detectionWebsite intrusion detection
• Failed account access loggingFailed account access logging

• Traffic monitoringTraffic monitoring
– Determine whether or not an intersection requires Determine whether or not an intersection requires 

a traffic signala traffic signal
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Health Monitoring and ManagementHealth Monitoring and Management
• Epidemic (or pandemic) detection and preventionEpidemic (or pandemic) detection and prevention

– Center for Disease Control and Prevention (CDC) continuously Center for Disease Control and Prevention (CDC) continuously 
monitors medical and public health information from physicians monitors medical and public health information from physicians 
and hospitals across the countryand hospitals across the country

– GoalsGoals
• Earliest possible detection of viruses and diseaseEarliest possible detection of viruses and disease
• Halt the spread by quarantining and treating the afflicted individualsHalt the spread by quarantining and treating the afflicted individuals

– Afflictions of interestAfflictions of interest
• Naturally occurring, such as the influenza virusNaturally occurring, such as the influenza virus
• Bio-terrorist developed/releasedBio-terrorist developed/released

• Early detection of disease within individual patients Early detection of disease within individual patients 
– Screening and monitoring programsScreening and monitoring programs

• Diseases such as diabetes, hypertension, thyroid disease, tuberculosis, Diseases such as diabetes, hypertension, thyroid disease, tuberculosis, 
cancer, and coronary artery diseasecancer, and coronary artery disease

• Age to begin screening exams, the intervals between exams, and Age to begin screening exams, the intervals between exams, and 
(possibly) the age to end screening exams(possibly) the age to end screening exams

– Diagnose and treat patients before they show any signs or Diagnose and treat patients before they show any signs or 
symptoms (i.e., while in the pre-clinical state)symptoms (i.e., while in the pre-clinical state)

• Aerospace applicationsAerospace applications
– Timely detection of local health anomalies has a great impact on the Timely detection of local health anomalies has a great impact on the 

safety of the missionsafety of the mission
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Environmental Monitoring and PredictionEnvironmental Monitoring and Prediction

• Early warnings of impending natural disastersEarly warnings of impending natural disasters
– TornadoesTornadoes
– HurricanesHurricanes
– TsunamisTsunamis
– EarthquakesEarthquakes
– FloodsFloods
– Volcanic eruptionsVolcanic eruptions

• Contamination of natural resourcesContamination of natural resources
– Potable water is continuously monitored by water Potable water is continuously monitored by water 

utilities for purity and potential contaminantsutilities for purity and potential contaminants
• CausesCauses

– NaturalNatural
– Man-made (e.g., terrorist)Man-made (e.g., terrorist)
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Safety and SecuritySafety and Security
• Physical intrusion detectionPhysical intrusion detection

– Home and corporate security alarm systemsHome and corporate security alarm systems
• Fire safetyFire safety

– Fire, smoke, and carbon monoxide alarm systemsFire, smoke, and carbon monoxide alarm systems
• Homeland securityHomeland security

– Cargo securityCargo security
• Verify that the contents of cargo was not compromised during Verify that the contents of cargo was not compromised during 

shipmentshipment
– Threat detection and managementThreat detection and management

• Detection, tracking, and interception of threat missiles is a Detection, tracking, and interception of threat missiles is a 
quintessential military threat management examplequintessential military threat management example

• Intrusion detection of enemy submarines within an operating areaIntrusion detection of enemy submarines within an operating area

• Prediction of 9-1-1 call volumesPrediction of 9-1-1 call volumes
– Aids emergency service providers in service planning and Aids emergency service providers in service planning and 

recognition of anomalous callsrecognition of anomalous calls
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Business Process OptimizationBusiness Process Optimization
• Manufacturers rely heavily upon event Manufacturers rely heavily upon event 

detection methodsdetection methods
– Reduce overall maintenance costsReduce overall maintenance costs

• Manufacturing and condition-based maintenanceManufacturing and condition-based maintenance
– Identify machines or processes that are in need of repair or Identify machines or processes that are in need of repair or 

adjustmentadjustment

– Ensure compliance with requirementsEnsure compliance with requirements
• Business process complianceBusiness process compliance

– Food and drug manufacturingFood and drug manufacturing
» Strict regulatory requirements obligate companies to certify Strict regulatory requirements obligate companies to certify 

that products do not exceed specific environmental that products do not exceed specific environmental 
parameters during processingparameters during processing
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EVENT DETECTIONEVENT DETECTION
MODELING AND SIMULATIONMODELING AND SIMULATION



31© 2009 Lockheed Martin MS2

Relationship between Event Detection andRelationship between Event Detection and
Modeling and SimulationModeling and Simulation
• Intimate relationship and indivisible link Intimate relationship and indivisible link 

between Event Detection and Modeling and between Event Detection and Modeling and 
Simulation (M&S)Simulation (M&S)
– Requirements DevelopmentRequirements Development
– Algorithm TestingAlgorithm Testing
– System ImplementationSystem Implementation
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Requirements DevelopmentRequirements Development

• Use M&S at the forefront of the systems engineering Use M&S at the forefront of the systems engineering 
process as a requirements development tool for an process as a requirements development tool for an 
event detection systemevent detection system

• Requires a detailed study of the real-world systemRequires a detailed study of the real-world system
– Examine the parameters of interestExamine the parameters of interest
– Understand the relationships between the system inputs and Understand the relationships between the system inputs and 

outputsoutputs
– Gain deeper insight into the system interactionsGain deeper insight into the system interactions

• Through M&S, the systems engineer may determine Through M&S, the systems engineer may determine 
what events can and need to be detected and what what events can and need to be detected and what 
parameters must be monitored to detect these eventsparameters must be monitored to detect these events
– e.g., An engineer may determine that mechanical vibration e.g., An engineer may determine that mechanical vibration 

and noise levels must be monitored as indications of an and noise levels must be monitored as indications of an 
imminent machine failureimminent machine failure
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Algorithm TestingAlgorithm Testing
• M&S provides a test bed for new event detection M&S provides a test bed for new event detection 

algorithms and faster than real-time studiesalgorithms and faster than real-time studies
– Event detection algorithms are implemented within an M&S Event detection algorithms are implemented within an M&S 

framework more easily than within a real systemframework more easily than within a real system
– Simulation allows the implementations to be tested faster Simulation allows the implementations to be tested faster 

than in the real systemthan in the real system
• Caveat: M&S must be of high enough fidelity to be Caveat: M&S must be of high enough fidelity to be 

validated (as similar enough to the actual operating validated (as similar enough to the actual operating 
environment of the fielded event detection system)environment of the fielded event detection system)
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System ImplementationSystem Implementation
• M&S may be used within an event detection system M&S may be used within an event detection system 

implementation to abstract or simplify real-world dataimplementation to abstract or simplify real-world data
• Andrade, Blunsden, and Fisher [2006] present an Andrade, Blunsden, and Fisher [2006] present an 

automatic technique for detecting abnormal events in automatic technique for detecting abnormal events in 
crowds by abstracting the original data using M&Scrowds by abstracting the original data using M&S
– Crowd behavior is typically difficult to predict or translate Crowd behavior is typically difficult to predict or translate 

semanticallysemantically
– It is also difficult to track individuals in a crowd even when It is also difficult to track individuals in a crowd even when 

using state-of-the-art tracking algorithmsusing state-of-the-art tracking algorithms
– Characterize crowd behavior by observing the crowd optical Characterize crowd behavior by observing the crowd optical 

flow and use unsupervised feature extraction to encode flow and use unsupervised feature extraction to encode 
normal crowd behaviornormal crowd behavior

– Unsupervised feature extraction applies spectral clustering Unsupervised feature extraction applies spectral clustering 
to find the optimal number of models to represent normal to find the optimal number of models to represent normal 
crowd motion patternscrowd motion patterns

– Crowd motion models are Hidden Markov Models (HMMs) to Crowd motion models are Hidden Markov Models (HMMs) to 
cope with the variable number of motion samples that might cope with the variable number of motion samples that might 
be present within each observation windowbe present within each observation window

– Results of this technique clearly demonstrate its Results of this technique clearly demonstrate its 
effectiveness in detecting crowd emergency situationseffectiveness in detecting crowd emergency situations
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SummarySummary
• This presentation merely scratched the surface of This presentation merely scratched the surface of 

event detection challenges, methods, and event detection challenges, methods, and 
applicationsapplications
– The domain of applicability of event detection and its The domain of applicability of event detection and its 

associated methods is expansive and ever increasingassociated methods is expansive and ever increasing
• Reliable event detection is a pervasive problemReliable event detection is a pervasive problem

– Requires detailed problem analysis and innovative solutions Requires detailed problem analysis and innovative solutions 
to overcome a myriad of challengesto overcome a myriad of challenges

– Fortunately, there is no lack of researchers willing to accept Fortunately, there is no lack of researchers willing to accept 
these challengesthese challenges

• Event detection methods will continue to be an area Event detection methods will continue to be an area 
of interest and much research now and into the futureof interest and much research now and into the future
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