Outline

• SOA and Web services in two minutes
• Experiment goals
• Cooperative ESM Operation
• Experiment execution
• Experiment results and lessons learned
Service Oriented Architecture

“A service is a mechanism to enable access to resources, where the access is provided using a prescribed interface and is exercised consistent with constraints and policies as specified by the service description.”

(OASIS: Reference Model for Service Oriented Architecture 1.0).

Gartner Research "Service-Oriented Architecture Under the Magnifying Glass" by Yefim Natis, Application Integration & Web Service, Summit 2005, April 18-20, 2005
Experiment Goal and Setting

• Large national experiment (late 2008)
 – interconnections between all the military services, some tried before and some new
 – large number of trials

• Using Web services in an operational setting
 – Proof-of-concept/feasibility test
 – Demonstrate how
 • Web services can function as an integrator,
 • use of subscriptions and automatic service discovery reduce the need for manual configuration,
 – Investigate the amount of overhead XML security standards introduce
Cooperative ESM Operations (CESMO)

- An ESM sensor platform can have two roles
 - ordinary sensor platform
 - SIA, which coordinates observations and calculates the geolocations of observed emitters
The CESMO experiment

- **Experiment participants**
 - two air force sensor platforms
 - two navy sensor platforms
 - the SIA
 - a coordination cell
 - understands the ESM data format
 - wanted access to the ESM bearing as reported by the sensors
 - a C2 system
 - does not understand the ESM data format
 - wanted geolocations of observed emitters in NFFI format
- **SOA-enabled CESMO platforms**
 - through a self made web service front-end
 - uses an existing experimental middleware for publish/subscribe
Planned network setup
SOA as an integrator

- We used Web services to integrate systems that would otherwise not be able to share information by
 - Wrapping the legacy CESMO software
 - In the navy network we used our software to wrap the software on each platform
 - The air force nodes could not be wrapped individually, the solution was to wrap the entire network
 - Making information from both these networks available to other systems through new services
 - previously separate CESMO systems were able to share information
 - outside systems could benefit from the information by receiving geolocations of emitters
Publish/subscribe

- Interested parties subscribe to the information they are interested in
 - more fine-grained control of information flow
 - nodes only receive information that they have expressed an interest in
 - information is only sent onto the network if someone is interested in it
 - network traffic is only generated when new information is available, without the need for polling (less network traffic)
 - messages can be multicasted to interested parties, thus saving further on network resource usage
Notification Message Example

- Notification message without security
 - Envelope is left untouched
 - Body is compressed
 - Payload is shown in red
 - Message size depends on size of payload

- Subscription messages are fixed in size
Automatic Service Discovery

- The platforms discover each other without manual configuration
- The list of available services is presented to the CESMO operators, allowing them to choose which services to subscribe to

- UdpDiscovery, a custom Java library
 - Optimized for disadvantaged grids
 - Compression of the objects was used to ensure compactness
 - Gives all nodes updated information about the network
 - Network usage
 - Exchange of information between nodes in the network at regular intervals
 - Each such update is approximately 500 bytes
 - One message per node per minute
XML Security

• Subscription requests were subject to role based access control
 • SAML
• Messages were subject to end-to-end integrity protection using XML signature
 • XACML
XML Security Overhead

<table>
<thead>
<tr>
<th></th>
<th>Subscription Message</th>
<th>Notification Message Envelope</th>
<th>Example Notification Message (compressed body)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>985 bytes</td>
<td>584 bytes</td>
<td>652 bytes</td>
</tr>
<tr>
<td>Size w/security</td>
<td>5074 bytes</td>
<td>2509 bytes</td>
<td>2577 bytes</td>
</tr>
</tbody>
</table>
Network usage summarized

- Communication based on UDP multicast
 - replaces the standard HTTP/TCP binding for Web services
 - more resistant to long communication delays
 - less communication overhead
- Service discovery sends small messages at regular intervals
- Subscription messages are fixed in size
- The size of a notification is dependent on the payload
- The use of XML security standards increase the size of the message significantly
 - compression and potentially removal of optional information is needed to allow the use of these standards in bandwidth constrained networks
Summary

• Illustrates the added value of SOA and shows that it can be applied in an operational network
 – allow legacy software to share information, and offer several new services based on this information
 – less manual configuration, more fine-grained control of information flow

• Compressed XML messages
 – data exchange of the SOA system was comparable to that of the standard CESMO
 – we got a lot of added value without introducing any significant overhead

• An opportunity to show the flexibility of SOA
 – the need for ad hoc reconfiguration of the network did not prevent our SOA software from functioning
 – adapt to changing condition at runtime by changing the dissemination of information between nodes (establishing and terminating subscriptions when needed)

• Testing Web services with real data under real workloads was a benefit; previously we had verified its functionality in our lab environment. During the experiment we saw that the software could handle the data and usage patterns of an operational system