Experimental Evaluation of Advanced Automated Geospatial Tools

Walter Powell - GMU
Kathryn Blackmond Laskey - GMU
Leonard Adelman - GMU
Shiloh Dorgan - GMU
Ryan Johnson - GMU
Craig Klementowski - VIECORE
Rick Yost - VIECORE
Daniel Visone - AGC
Ken Braswell - AGC
Thanks to the Team!

- U.S. Army Geospatial Center
 - Michael Powers, Technical Director
- GMU Team
 - Eric Nielsen, C4I Center SME
 - Scott Carey, C4I Center SME
- VIECORE, FSB
 - Andrew Goldstein
 - Mike Altenau
- Army Battle Command Battle Lab
 - Mr. Dick Brown
 - MAJ John Rainville
Background

• Map is focal point of the command post
• Automated geospatial support tools are rapidly penetrating all command levels
• Empirical research is needed to:
 – Evaluate military value of emerging tools
 – Prioritize future tool development
Why Conduct Experiments?

- Most military R & D tests to requirements
- Hypothesis driven to test value-added
- Statistically significant results
 - Quantitative not just qualitative feedback
- Answer questions:
 - What is the value added for the warfighter?
 - Does the product meet operational needs?
 - How can the product be improved?
Purpose of Research Program

• Sponsored by
 – U.S. Army Engineer Research and Development Center (ERDC)
 – U.S. Army Geospatial Center (AGC)

• Purpose:
 – Assess the value-added to Military Decision Making from use of Geospatial Decision Support Products (GDSPs)
 – Evaluate contribution of the Battlespace Terrain Reasoning and Awareness – Battle Command (BTRA-BC) suite of geospatial reasoning tools
BTRA-BC II

Objective:

- Empower commanders, soldiers, and systems with information that allows them to understand and incorporate the impacts of terrain and weather on their functional responsibilities and processes

- Products
 - Information and knowledge products that capture integrated terrain and weather effects
 - Tactical Spatial Objects (TSOs) - Predictive decision tools that exploit these products

- Some BTRA-BC products have been fielded in the U.S. Army’s Digital Topographic Support System (DTSS)
 - Used by U.S. Army for terrain analysis
Current Study

• Study Objective
 – Assess the benefit of BTRA-BC tools to military planners in a complex and realistic scenario
 – Expand on results of previous experiment (presented at last year’s ICCRTS)
 • COA generation vs. AA recommendation
 • Planners vs. terrain analysts
 • More complex scenario and tasks
 • More complex decision-making

• Mission:
 – Move to seize an objective in the presence of the enemy
 • Analyze actual terrain data
 • Plan a Course of Action (COA)
 • Mechanized Battalion
Primary Hypotheses

1. Participants who use BTRA-BC TSOs will produce military planning output more quickly
2. Participants who use BTRA-BC TSOs will produce a higher quality plans
3. Participants who use BTRA-BC TSOs will display as good an understanding of the impact of the given terrain on military planning
4. The quality of the output generated with BTRA-BC TSOs will be more uniform
5. There will be little or no learning effect due to evaluation design
6. Participants will consider using BTRA-BC TSOs superior when producing a plan with respect to speed, quality, ease and overall
Study Design

• Environment
 – Commander’s Support Environment (CSE)
 • Developmental C2 system
 • Originally a DARPA initiative

• Three independent variables
 – System used (with and without BTRA-BC TSOs)
 – System Order (which system was used first)
 – Scenario Order (Which of two near identical scenarios was used first)
Study Design

• **Within Participants** design with respect to System used:
 – Each subject will solve a planning scenario in both conditions (with and without BTRA TSOs)

• **Between Participants** design with respect to
 – System Order
 – Scenario Order
 – Design was counterbalanced on scenario order and system order

• Study design will maintain the required statistical power and minimize the number of participants

• Training prior to trials
 – CSE (4 hours) and
 – BTRA-BC (2 hours)
Study Design (cont)

- Participants
 - U.S. Army Majors, Lt. Colonels, Colonels
 - Planning experience
 - Comfortable with digital systems

- Experience
 - Questionnaire
 - Ranked and grouped by experience
 - Randomly assigned to groups

- Anonymous
 - Randomly assigned participant numbers
 - Randomly assigned data designators
Experimental Tasks

• The evaluation scenario began with analysis of specific terrain and continued to the point of generating a plan of movement and a Course of Action (COA).

• Specific tasks:
 – Digital Plan
 • Plan movement
 – Identify Mobility Corridors (MC)
 – Categorize Mobility Corridors by size
 – Group Mobility Corridors to form potential Avenues of Approach
 – Identify Choke Points on Avenues of Approach
 – Calculate travel times and coordinate simultaneous arrival
 • Identify Engagement Areas
 • Identify Battle Positions
 • Identify Ambush Sites
 • Identify Named Areas of Interest (NAI)
 • Generate battalion graphics including subordinate echelon Areas of Responsibility
BTRA-BC Tier 1 TSOs

Mobility Corridors
Route
Chokepoints
BTRA-BC Tier 2 TSOs

Battle Positions

Hide Positions

Engagement Area
Experimental Tasks (cont)

• Specific tasks (cont)
 – Operation Order
 • Commander’s Intent
 • Concept of Operations
 – Explanation of graphics
 – Impact of terrain on mission
 – Terrain Understanding Questionnaire
 – System Comparison Questionnaire
Measures

• Time to complete scenario (H1, H5)
 – Objective
 – Significant in prior experiment
 – Possibly less significant in more complex planning

• Quality of solutions as judged by expert evaluators (H2, H4, H5)
 – Subjective
 – 45 criteria in 15 categories
 – Independent SMEs

• Scores on a questionnaire evaluating subject understanding of the terrain (H3, H5)

• Scores on a questionnaire evaluating subjective perception of w/ BTRA-BC (H6)
 – Scale Normal and Reversed
Preliminary Results: Plan Quality (H2)

- There is statistical evidence that:

 Participants produced a higher quality output using CSE w/ BTRA-BC \([F(1,4) = 5.35, p = 0.08] \)

- Performed a repeated-measures ANOVA on the average of all 13 measures of plan quality

- Approached traditional 0.05 significance level

- No other effects appeared significant.
Preliminary Results: TSO-related Measures (H2)

- Participants produced a higher quality output using measures directly related to BTRA-BC TSOs \([F(1,4) = 12.62, p = 0.02]\]

- Performed a repeated-measures (ANOVA) on the average of the TSO related measures

- Possible learning effect for CSE w/o BTRA-BC \([p = 0.08]\)(H5)

- No other significant effects
Preliminary Results: Terrain Understanding (H3, H4)

- There is no statistical evidence that participants' knowledge of the impact of the given terrain on military planning differed when using CSE w/ BTRA-BC (H3).

- Participants who used CSE w/ BTRA-BC first had significantly less variance (more uniformity) in measures of their terrain understanding than those who used CSE w/o BTRA first [F(1,7) = 0.10, p = 0.00] (H4).

- CSE w/ BTRA-BC first Var = 0.25
- CSE w/o BTRA-BC first Var = 2.46
Preliminary Results: Subjective Perception (H6)

• There is strong statistical evidence that:
 1. Participants believe they can produce an output of **higher quality** w/ BTRA-BC than w/o BTRA-BC
 2. Participants believe that overall CSE with BTRA-BC was **superior** to CSE w/o BTRA-BC

• The results provide marginally significant evidence producing a plan using CSE with BTRA-BC TSOs was **easier** than with BTRA-BC TSOs.

• No effect for **speed**
Summary (1 of 2)

- Preliminary results are encouraging
- BTRA-BC TSOs improved the planning process
 - Participants produced a **higher quality** output using CSE w/ BTRA-BC when all measures are considered
 - Participants produced a **higher quality** output using measures directly related to BTRA-BC TSOs
 - Participants who used CSE w/ BTRA first had *significantly less variance (more uniformity) in measures of their terrain understanding*
 - There is a **learning effect** in that participants who used CSE w/BTRA-BC first produced **higher quality** output when they used CSE w/o BTRA-BC
Summary (2 of 2)

- Participants believe they can produce an output of higher quality, more easily and that overall CSE with BTRA-BC was superior to CSE w/o BTRA-BC

- Participants did not generate the output more quickly

- Participants knowledge of the impact of the given terrain on military planning was not degraded

• These results will be strengthened when data from the full set of 16 participants is analyzed.
Next Experiment in the Series

• Object: Assess the value of Buckeye’s 4-inch resolution imagery and DTED 5 elevation data
• Examining accuracy of data vice effectiveness of tools
• Experimental Design
 – Platoon / reinforced squad
 – Iraqi city where CIB1 and Buckeye data are available
 – Planning task: Evaluation of potential sites for Vehicle Control Point (VCP)
 – Environment CSE
 – Participants: 16 infantry E6-E7 or O2-O3 with experience in-country
Questions?