

ALIDADE INCORPORATED

Decentralized Command and Control: Self-Organization in a Simple Model for Emergency Response

Dr. Michael Bell

14th International Command and Control Research and
Technology Symposium

16 June 2009

Introduction

Military organizations traditionally require unity of command:

"All forces operate under a single commander with the requisite authority to direct all forces employed in pursuit of a common purpose"*

- In operations requiring cooperation with or support from other agencies, the private sector, or foreign nations ("complex endeavors"), unity of command may not be possible
- In such cases, doctrine focuses on *unity of effort:*"coordination and cooperation toward common objectives, even if participants are not necessarily part of the same command or organization"*

*US DoD, Joint Publication 3-0 (2008)

Civilian Agencies

The National Incident Management System (NIMS) provides for a unified command:

"agencies with different legal, geographic, and functional authorities and responsibilities... work together effectively without affecting individual agency authority, responsibility, or accountability"*

NIMS and the National Response Framework

"are designed to ensure that local jurisdictions retain command, control, and authority over response activities for their jurisdictional areas"*

*DHS, National Incident Management System (2008)

Possible Solution

- A network-centric approach:
 - 1. A robustly networked force improves information sharing.
 - Information sharing and collaboration enhance the quality of information and shared situational awareness.
 - Shared situational awareness enables selfsynchronization. [emphasis added]
 - 4. These, in turn, dramatically increase mission effectiveness.

 D.S. Alberts, "Information Age Transformation," 1996
- Self-synchronization (temporal) + self-assembly (spatial) = self-organization (complex systems)
- Is it possible to "self-organize" an operation by insuring common intent and purpose and shared situational awareness?

Incident Response Model

Scenario

- An event has has caused a number of simultaneous incidents, randomly distributed over a geographical area (e.g., storm-related power outages)
- A force of first-responders (e.g., utility company service trucks) is available, initially distributed randomly across the district
- Incidents and responders are identical; service time is negligible compared to transit time

Shared awareness

Each responder has timely information on the location of all unresolved incidents

Common intent

- Service all incidents in the shortest possible time
- Decentralized command and control
 - No central planning or command; no communication between responders
- Concept of operations
 - Each responder deals with the nearest unresolved incident

Technical Note

- For one responder, this is just the Traveling Salesman problem (TSP)
- TSP is "hard" (NP-complete)
- Optimization is impractical for more than a few incidents
- The proposed "greedy" algorithm (heuristic) is
 - Easy to implement
 - Known to produce the worst possible result for certain cases
- For multiple responders, less is known
 - Related to the vehicle scheduling problem (VSP)
 - Hard for a central planner (not known to be NP-C)
 - Individual responders cannot optimize without knowledge of other responders

Agent-Based Simulation

QuickTime™ and a decompressor are needed to see this picture.

- Environment: NetLogo
- Area = 33 x 33 grid
- 1089 potential incident locations
- 50 incidents (density = 50/1089 = 0.046)
- Responder speed = 1 grid site/time step
- Zero time required to service an incident
- Experiment: 1000 replications with random initial conditions

Completion Time

Effectiveness

Marginal Effectiveness

 (Mean effectiveness) vs. (number of responders) has slope of roughly 0.47

Bad news:

- 10 responders have about 4.9 times the effectiveness of one
- 53% of the effort of additional responders is wasted

Good news:

- Best case (minimum time) shows improvement of roughly 10x for 10 responders
- Constant marginal effectiveness implies no evidence of diminishing returns

Completion Time Distributions

Dysfunctional Self-Organization

 At some point many (even all) responders form a tight cluster that travels together with members competing for the same nearest incident

Because:

- Responders that choose the same goal approach one another
- The first responder to reach the incident deals with it, but the other responders are now closer than when they started
- This makes it more likely that they will again choose the same goal
- Eventually, groups of responders travel together, reducing effectiveness

Separation

Two Responders, 50 Incidents

Avoidance Rule

If (current goal drops off incident list) then (set goal as second nearest incident)

 Logic: "break ties" by giving the first responder on the scene priority to proceed to the nearest incident

- Improvement
 - Dramatic reduction in extremely long-time cases
 - Increased symmetry of the time distribution

Results of Avoidance Rule

(10 responders)

Separation

Two Responders, 50 Incidents, Worst Case

Improvement (Time)

Improved Avoidance Rule

Improved Rule Results

- Performance improvement
 - 18% average
 - 43% worst case (59% for simple avoidance)
- Significant narrowing of distribution (improved predictability)
- Diminishing returns
 - Second responder has 73% marginal effectiveness; ninth has only 43%
- Improved avoidance rule still sometimes makes things worse
- Problem may be caused by competition among three or more responders

Future Work

- Find source of remaining inefficiency (approximately 40% for 10 responders) after an avoidance rule is applied
 - Examine more sophisticated variations of the avoidance rule
 - Try other ("non-greedy") heuristics
- Measures of performance or constraints other than time (distance traveled, resource efficiency, load balance, etc.)
- Limits on information sharing (delays, errors, general or selective restrictions on distribution)
- Effects of additional information (responder locations and/or goals)
- Variation among incidents (location relative to terrain, time to service)
- Variation among responders (speed over terrain, speed of service, capacity)

Conclusions

- Decentralized C2 can be effective in our model; for 10 responders with simple (greedy) behavior rule
 - Best case: 10x better performance than one responder
 - On average: ≈ 5x better than one
- Perverse (dysfunctional) self-organization
 - Produces a long tail of pathological cases
 - Can be corrected with avoidance rules
 - Average performance improves by 20% to ≈ 6x one responder
- Lack of direct communication can be (partially) compensated by detecting changes in the environment (stigmergy)
- Self-organization is not always apparent
 - Perverse behavior (pack formation) is obvious in the simulation
 - Avoidance rules eliminate that pattern, but behavior is equally self-organized
- Better rules and rule development methods are needed
 - Hard problems need heuristics not optimizations
 - Agents cannot always tell if they are part of a self-organized behavior or structure

Conclusions

- Decentralized C2 can be effective in our model
- Lack of direct communication can be (partially) compensated by detecting changes in the environment (stigmergy)
- For 10 responders with simple (greedy) behavior rule
 - Best case: 10x better performance than one responder
 - On average: ≈ 5x better than one
- Perverse (dysfunctional) self-organization
 - Produces a long tail of pathological cases
 - Can be corrected with avoidance rules
 - Average performance improves by 20% to ≈ 6x one responder
- Self-organization is not always apparent
 - Perverse behavior (pack formation) is obvious in the simulation
 - Avoidance rules eliminate that pattern, but behavior is equally self-organized
- Better rules and rule development methods are needed
 - Hard problems need heuristics not optimizations
 - Agents cannot always tell if they are part of a self-organized behavior or structure