

A Context-Sensitive Functional Model of Teamwork Processes

Daniel Lafond¹, Hengameh Irandoust¹, Sébastien Tremblay², Wilson Price², Abder Rezak Benaskeur¹

¹ Defence R&D Canada – Valcartier, ² Université Laval

Introduction

Teamwork involves two or more people (within or across organizations) interacting dynamically, adaptively and interdependently toward a shared objective/goal/mission (Salas et al., 1992)

Key distinctions:

- teamwork and taskwork
- intra-team and inter-team collaboration

Inter-team collaboration can take place within a single agency, as in joint operations involving the army, navy and air force. Multi-agency teamwork occurs when a number of organizations collaborate to deal with a particular situation (e.g., coalition operations).

Introduction

A great deal of research on team functioning has been devoted to:

1) identifying the relevant cognitive and social processes

2) measuring their impact on team effectiveness

Challenge

There are a multitude of individual attitudes, behaviors, decisions, and actions that may contribute to successful outcomes for the entire organization (MacMillan et al., 2005, p. 253)

- This complexity creates a major challenge for understanding and measuring organizational performance.
- A strong framework to organize and synthesize knowledge is needed to guide measurement and analysis.

Building blocks of collaboration

Synthesis based on the research literature: 18 distinct features of collaboration

Adaptability

Conflict management

Communication

Division of labor

Goal specification

Group cohesion & team identity

Group motivation & commitment

Leadership

Mission analysis

Monitoring progress toward goals

Mutual monitoring & support

Planning & synchronization

Resource sharing

Shared knowledge,

representations & intentions

Systems interoperability

Systems monitoring

Training & education

Trust

Functional classification of team processes

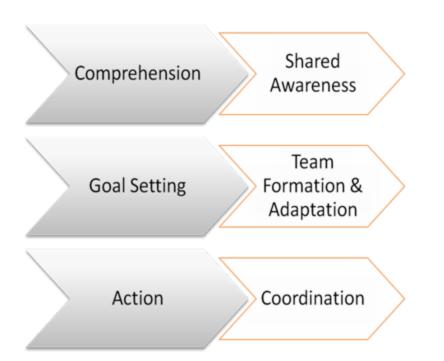


Figure 1: Aspects of behaviour associated with team functions

Functional classification of team processes

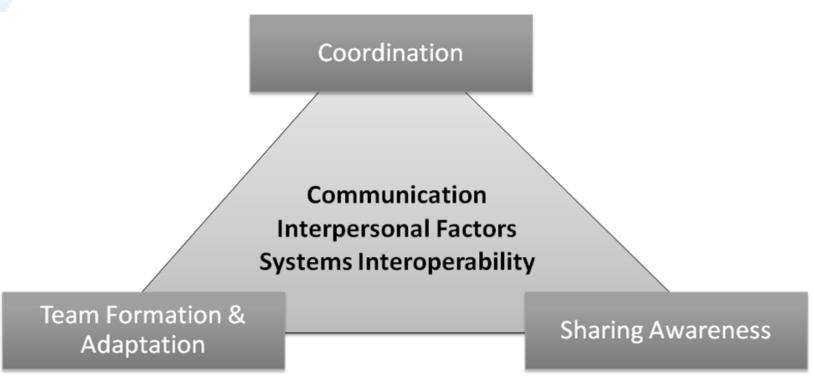


Figure 2: Functions of collaborative interaction and teamwork requirements

Process-function mapping

Table 1: Functional classification of the building blocks of collaboration

Team formation & adaptation	Coordinating	Sharing awareness	Teamwork requirements
Adaptability	Leadership	Shared knowledge,	Communication
Division of labour	Planning &	representations & intentions	Group cohesion & team
Goal specification	synchronization		identity
Mission analysis	Conflict	Systems monitoring	Group motivation &
Wiission anarysis	management	Monitoring progress	commitment
Mutual monitoring & support	Resource sharing	toward goals	Systems interoperability
Training & education			Trust

Contextual factors

The collaboration context can have a profound impact on teamwork requirements and mediate the relationship between team processes and team effectiveness

For example:

The teamwork requirements of an effective explosive ordnance disposal team are not the same as those on a combat information center or weapons fire team (Driskell, Salas, & Hogan, 1987).

Purpose of the model

A general limitation of existing teamwork models is that they fail to <u>account for the variable effects</u> <u>of teamwork processes depending on the context</u>.

[Group research, in general] not only fails to study the interactions between group and embedding context but takes great pains to strip away "irrelevant" contextual factors. [...] What is most successfully stripped away is the researcher's attention to context

(Arrow et al., 2000)

Model overview

- Assessment of teamwork processes to indicate the level of collaborative activity achieved
- Degree of collaboration can be a powerful predictive factor of team / multiteam effectiveness by considering the key factors of collaboration in combination
- Each building block's intrinsic importance (weight) in predicting the outcome is expected to change in various contexts (i.e., according to task type, time pressure, team structure, etc.)

Model overview

COLLABORATION INCREASES **CAPABILITY**

(as an integrative variable)

(not just effectiveness)

TEAMWORK REQUIREMENTS DEPEND ON **CONTEXT**

AGILE TEAMS ADAPT THEIR COLLABORATION PROCESS TO CHANGING REQUIREMENTS

Formal representation

Team capacity is predicted by the (weighted) degree of collaborative interaction (DC)

Mutually reinforcing perspective on team factors:

$$DC = F_1 \cdot F_2 \cdot F_3 \cdot F_4 \cdot F_5 \dots \cdot F_{18}$$

Simplified model using functional classification:

$$DC = F_1 \cdot F_2 \cdot F_3 \cdot F_4$$

Model with context-dependent weights:

Context-dependent weights

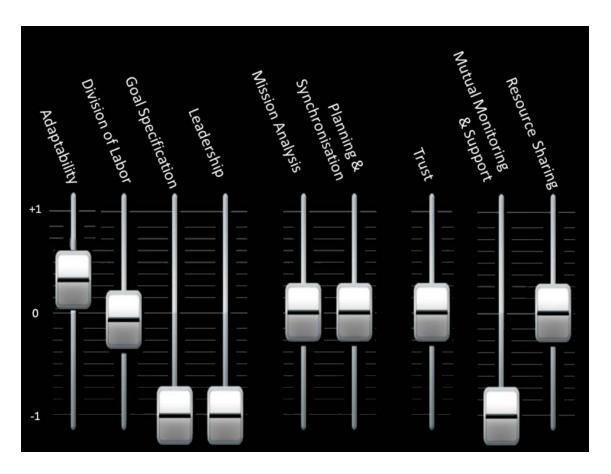


Figure 3: The equalizer as an analogy of the relative weights of the building blocks

Model calibration method

3 complementary approaches:

- Multiagent simulations
- Laboratory experiments with microworlds
- Evaluation of field operations / exercises

Applications:

- Identifies critical teamwork processes according to context
- Better collaboration and adaptation = greater agility

Implications for C2 team agility

Six dimensions of agility (Alberts & Hayes, 2003):

Robustness: ability to maintain effectiveness across contexts

Resilience: ability to recover / adjust to damage or perturbations

Responsiveness: ability to react to a change in the environment

Flexibility: ability to employ multiple ways to succeed

Innovation: ability to do new things or do old things in new ways

Adaptation: ability to change work processes and organization

Implications for C2 team agility

Agile C2 requires teams and multiteam systems to adapt their collaborative processes as a function of contextual changes.

A better capability to figure out the requirements of the situation would support adaptive C2.

Limits: Change is difficult to anticipate or even to detect once it has occurred (change blindness).

- Requires good monitoring and sensemaking.

Conclusion

Model proposes a predictor of team effectiveness that may prove more useful than individual factors taken separately.

Rather than considering team processes individually, it is their combination that best determines the global outcome.

Contributions:

- Integration of conflicting results in team research
- Metric for assessing teamwork effectiveness as a function of contextual requirements
- Tool to identify context-based collaboration priorities for team design and adaption