Agility Through Adaptive Autonomy

Martijn Neef and Bob van der Vecht
TNO Defence, Safety and Security
The Hague, The Netherlands
Agility Through Adaptive Autonomy
Dynamic coordination in networked organizations

Introduction and context
Adaptive autonomy in multi-agent organizations
Agile coordination using adaptive autonomy
Application scenarios
Further work and conclusions

Martijn Neef
Bob van der Vecht

Networked Organizations Group
Business Unit Information and Operations
TNO Defence, Security and Safety
The Hague, The Netherlands
Introduction

• This work is about decision making in artificial agent communities
 • decision making models for artificial agents
 • focus on autonomy and coordination mechanisms

• is academic, but relevant for research into NEC organizations
 • stresses importance of the topics of autonomy and coordination
 • opportunities to deploy agents in NEC structures
 • executable models for distributed coordination in NEC structures
Agility, autonomy and coordination

- **Agile**

 - *a:* marked by ready ability to move with quick easy grace
 - *b:* having a quick resourceful and adaptable character

- **Resilient**

 - *a:* capable of withstanding shock without permanent deformation or rupture
 - *b:* tending to recover from or adjust easily to misfortune or change
Agility, autonomy and coordination

• An agile and resilient organization must be able to cope with:
 • .. changing situations and environments
 • .. changing organizational structures

• .. and respond with:
 • .. alternate solutions (plans, goals)
 • .. alternate ways of working (coordination)
 • .. or both ..

• In NEC environments, many parties, many constraints and limited options for centralized command.
 → How to achieve agile, dynamic coordination?
 → How to make sure that individual autonomy is respected?
Agility, autonomy and coordination

• Usual approach to coordination challenges (top-down):
 • Achieve coordination of activities by designing rules for all parties involved
 • Agile coordination follows from pre-designed rules
 • Predictable behaviour, but may lead to problems in unforeseen situations, and leaves little room for autonomy

• Alternative approach (bottom-up):
 • Agile coordination follows from interaction between agents
 • Make the agent reason about its own objectives and role in the organization, and collaborate to reach objectives
 • Agile and adaptive, but may

→ challenge: find an approach that accommodates both options
Agent Autonomy

- Autonomy: to have control over internal state and behaviour

(Bradshaw, 2003)
Autonomy and agent reasoning

• Autonomy is about how much you let external events influence your decision making.

• Influence Control:
 • Operationalize concept of autonomy
 • Component preceding decision making
 • Gives the agent control of its autonomy
Influence Control

• Rule-based reasoning rules
• Rules represent the attitude of the agent towards the environment and towards other agents

• **Format: Head <-- Guard | Body**

message(X, Info) <-- trusted(X) | accept(Info)
message(X, Info) <-- NOT trusted(X) | reject(Info)
message(X, Info) <-- relevant(X) | accept(Info)
observation(X) <-- busy() | ignore(X)
Influence control

- Meta-knowledge for influence control
 - heuristics for relevant types of knowledge
 - what information is relevant for the agent and its objectives?

<table>
<thead>
<tr>
<th>Type of knowledge</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self knowledge</td>
<td>Is this information relevant for my objectives?</td>
</tr>
<tr>
<td></td>
<td>Does my state of mind permit new requests?</td>
</tr>
<tr>
<td>Organizational/Social knowledge</td>
<td>Relation to information source</td>
</tr>
<tr>
<td></td>
<td>Can the source be trusted?</td>
</tr>
<tr>
<td>Environmental knowledge</td>
<td>Availability of communication</td>
</tr>
<tr>
<td></td>
<td>Availability of information sources</td>
</tr>
</tbody>
</table>

- Heuristics result in adaptive autonomy for the agent
- The agent will only allow influences that are relevant from an agents’ own perspective
• Instruct agents to map **organizational rules** to their event processing rules
• The 'interface' between organizations and agent are **contracts**, that specify behavioural rules.
• Contracts contain organizational knowledge and **norms**
• Agent interpret contracts and translate them to **event-processing rules**
• Event-processing rules affect **agent reasoning** and **decision making**
Translation

• Translate organizational rules to event-processing rules

<table>
<thead>
<tr>
<th>Result of norm</th>
<th>Effect on mental state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obliged (action)</td>
<td>AddGoal (action)</td>
</tr>
<tr>
<td>Permitted (action)</td>
<td>AddBelief (permitted(action))</td>
</tr>
<tr>
<td>Forbidden (action)</td>
<td>AddBelief (forbidden(action))</td>
</tr>
</tbody>
</table>

• Agent **attitude** results from event-handling

<table>
<thead>
<tr>
<th>Event</th>
<th>Effect</th>
<th>Basic Attitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>Update Beliefs</td>
<td>Self-reliant</td>
</tr>
<tr>
<td></td>
<td>Ignore Event</td>
<td>Non-self-reliant</td>
</tr>
<tr>
<td>Inform message</td>
<td>Update Beliefs</td>
<td>Trusting</td>
</tr>
<tr>
<td></td>
<td>Ignore Event</td>
<td>Non-trusting</td>
</tr>
<tr>
<td>Request message</td>
<td>Add Goal</td>
<td>Cooperative</td>
</tr>
<tr>
<td></td>
<td>Ignore Event</td>
<td>Non-cooperative</td>
</tr>
</tbody>
</table>
Prior knowledge about the organization

- An agent joining an organization needs prior knowledge:
 - deontic aspects: obligation, permission, prohibition
 - relational aspects

- Relational aspects can be represented in event-processing rules
 - e.g. hierarchical relation:

```prolog
request(Sender, Task) <- supervisor(Sender) | AddGoal(Task)
```
Translation examples

• “Whenever engage-request from coordinator then actor is obliged to do accept-request”

\[
\text{message(coordinator, request, engage(contact)) <-- TRUE | AddGoal(engage(contact))}
\]

• “Whenever status-change then actor is obliged to do inform-coordinator-about-status”

\[
\text{observation(status-change) <-- TRUE | AddGoal(send(coordinator, inform, new-status))}
\]
Benefits

• Modular approach
 • Easy to change the organizational layout or behavior
 • Decision making is minimally restricted by prior knowledge
 • Options for prioritization and individual preferences via meta-knowledge

• Separation of organizational reasoning and decision making allows for agile and resilient responses to events
 • Agents ‘adapt’ to new organizational structures via meta-reasoning
 • Coordination follows from interaction within dynamic organizations
Application example – agents as proxies
Application example

• Let the agents act as *proxies* for participating groups in the NEC mission force
 • Instruct agents by giving them their *local policies* in the form of influence control rules (event-processing rules)
 • When agile behaviour is needed, *update local policies*
 • Let the agents *collaborate* to solve the coordination puzzle

• Results in:
 • Dynamic coordination
 • Respect for individual policies
 • Facilitate the coordination process in a distributed environment
From centralized to decentralized command

- Commander issues a new local policy to fleet members
- Fleet members adopt new heuristics to determine what contacts are relevant
- Fleet members now have the permission to act autonomously
Scaling up

- Commander offers a social contract to the new member
- New member enters interaction agreements with other members
- Existing members adopt new member in their mental state
Reorganization

- Contact with commander is lost
- Norms specify that in case of a broken command line, actors may adopt a self-serving attitude
- Fleet members take on a novel attitude (self-serving)
- Fleet members enter into a negotiation to decide on a new command structure
Conclusion

- Research into the role of autonomy in agent reasoning
- Model that allows artificial agents to control their autonomy
- Method for agents to adopt organizational rules
- Modular and extensible approach to describing organizational rules and policies

- Relevance for NEC purposes
 - Inspirational – use as a way to think about autonomy
 - Model – use as a way to represent local policies and organizations
 - Application – use as a blueprint to solve coordination challenges

- Current application areas
 - Human – machine organizations (‘augmented teams’)
 - Adaptive support agents for tactical decision makers
 - Collaborative decision making model in NEC simulations
More information

Martijn Neef
Networked Organizations Group
Business Unit Information and Operations
TNO Defence, Security and Safety
The Hague, The Netherlands
e-mail: martijn.neef@tno.nl

Bob van der Vecht
‘Adjustable Autonomy - Controling Influences on Decision Making’
Thesis available via the Utrecht University Library, or via:
 bob.vandervecht@tno.nl

Thank you for your attention!