“Mission Assurance in a Distributed Environment”

14th ICCRTS – C2 and Agility

Track 8 - C2 Assessment Tools and Metrics

Authors
Chad DeStefano and Thomas A. Clark
AFRL / RISF

Document cleared for public release with Case Number 88ABW-2009-2512
Overview

- Problem
- Objective
- Defining Mission Assurance (MA)
- DEEP Description
- Applying MA to DEEP
- Future Work
 - Metrics and Experimentation
- Summary
Problem

• Shift from individual hackers to sophisticated teams operating at will in complete stealth
 – Website defacement, Denial of Service (DoS) attacks, identify theft are overt, and nearly immediate to detect
 – Persistent access designed to influence in subtle or perhaps violent ways is becoming the new threat

• Continued shift to network-centric C2 with information processing distributed over computer networks at geographically dispersed locations presents technical challenges
 – The biggest threat is to our core mission planning and processing systems, examples:
 • Target coordinate, inventory decrement manipulation
Objective

- Define and illustrate mission assurance concepts within a distributed application operating in a notionally contested environment
 - Use the Distributed Episodic Exploratory Planning (DEEP) as an exemplary planning environment
 - Identify DEEP components that can be enhanced to maintain operations under duress
 - Initial “fight-through” capability
 - Formulate a test environment to conduct experimentation and determine metrics
Defining Mission Assurance

• Use standard information assurance (IA) tenets as a baseline
 – Attribution - holding a user accountable for their actions
 – Authentication – ensuring only privileged users access appropriate information
 – Availability - ensuring information and services are available when required
 – Confidentiality – ensuring information destined for an individual or group is exclusive
 – Integrity – information is kept unmodified by unintended sources

• IA Extensions
 – Availability a function of prioritized mission tasks mapped to network capabilities
 • So degraded states can be specified and measured
 – Trust must be built on top of attribution, authentication, confidentiality and integrity
 • So that contributors to mission success will be given increased responsibility
 – Mission workflow must be formally specified as business processes

• Exploring Trust
 – Trust is integral regarding either human or machine interaction
 – DEEP does not address trust formally yet (trust is assumed)
BOGSAT

- Bunch of Guys/Gals Sitting Around a Table

Constrains planning

- Quality
 - Finite experience
- Speed
 - Limited automation
- Creativity
 - Finite diversity

Improve planning quality, speed, and creativity

- Experienced-based
 - Orient and decide faster than adversaries with better plans
- Mixed-initiative
 - Syntheses of the strengths of both human and machine
- Net-centric
 - Expert team formation with greater diversity and creativity
DEEP Example

Scenario/Situation

- **Multi-Case Agents**
 - Initial Plan: $A_{51} + L_{32} + M_{451}$
 - Experience-Based Planner

- **Critic/Advis or Agents**
 - Refined Plan: p_1
 - Plan Advising & Critiquing Agents

- **Plan Explorer (M&S)**

Distributed Experience Bases

- $A = \text{air}$
- $S = \text{space}$
- $C = \text{cyber}$
- $I = \text{integrated}$
- $L = \text{land}$
- $M = \text{maritime}$
• Specifically
 – **Distributed AI Blackboard** for multi-agent, non-deterministic, opportunistic reasoning “at the edge”
 – **Experience-Based Reasoning** to capture experiences (successes and/or failures)
 – **Episodic Memory** for powerful analogical reasoning
 – **Multi-Agent System** for mixed-initiative planning
 – **ARPI Core Plan Representation** for human-to-machine dialog
 – **Constructive Simulation** for exploration of plausible future states
DEEP Approach

1. Engaged CMDR: “I have a situation!”
2. Planning Agents
3. Case Base
4. CBR System
5. Suggested
6. Adjusted
7. Judged
8. Execution Selection Critic Agent
9. Simulated
10. User Interface

Candidate Plans:
- Objective 1
- Objective 2

Plan Execution

Objective
- Objective 1
- Objective 2

Situation

Selected:

Adaptation Agents ("Repairers")

Critic Agents ("Evaluators")
Applying MA: Modeling the Process

- Protecting internal and external applications requires a model of the overall business process
- In DEEP, the business process is modeled at the application level and we can determine:
 - The sequence of prioritized events/activities
 - Event dependencies
 - Events that are not as important to the core business as others
- Knowing this information allows us to make decisions on redundancy, contingency plans, resource management for IA, and the impacts of resource losses
- In some cases, DEEP handles intrusions intrinsically
 - Plans have to survive a critical review process that would eliminate plans that were not fit for the objective
 - Critic agents do not have authority to modify plans
Agent Control Center (ACC)

- Agents are an integral part of DEEP, so proper synchronization and control is important.
- The ACC automatically and manually controls agents and monitors the system and network, it should:
 - Monitor traffic, move agents, shutdown agents, restart agents, ping agents, conduct behavior analysis based on connection patterns, and assess agent interaction as a foundation for determining trust.
 - Some of these functions are provided by the Java Agent Development Framework (JADE) used to develop the DEEP agents.
 - Detect network issues like congestion and attempt to automate system restart on an operable network.
• Data concerns
 – Modification (both minute and large)
 – Deletion
 – Theft
• Solutions
 – Encryption
 • All traffic should be encrypted
 • Data repositories should be encrypted
 – Hold data integrity using signature techniques to ensure data has not been modified
 – ACC could monitor traffic and alert based on irregular data movement
 – Redundant stores of data and rollback capability to ensure steady recover in the event of intrusion
 – Authentication to data repositories (limit access to a need to know basis – blackboard has panes / layers concept)
The human in the loop can pose problems for the mission as well

- Classic “insider threat”
- Insiders may have access to critical data and knowledge of how to use it
 - Very tough problem to solve

Solutions

- Enable authentication procedures
- User privileges – blackboard using authentication and proper registration to specific zones of information
• Networks that applications operate on also provide an attack vector
 – Examples of issues include limited bandwidth, loss of bandwidth (DoS, kinetic attack)
 – Solutions
 • Control center and network examining tools should detect loss of communication and attempt to regain functionality.
 – Software component movement or restart with state
 • Use of another mode of communication
Future Work

• Better establishment of metrics / experimentation
 – Experimentation
 • Emulation of rogue agent behavior sending out messages it shouldn’t
 • Conducting a DoS attack at critical pressure points
 • Emulation of component loss
 • Data modification – Can DEEP intrinsically handle data changes during the process?
 – Metrics (area of interest)
 • Must be able to achieve the above issues
 • Rollback must be faster than full restart
Future Work

• Establish a generic framework to apply to other programs
• Integration of AFRL IA in-house technology
• Multi-agent control
• Trust (can we employ wisdom of the crowds voting mechanic or control procedures to ensure trust?)
Summary

- Providing mission assurance is not an option, but a requirement for surviving in a contested network environment
- Emphasize building applications and systems that are reliable, self-sustainable and trustworthy
- Applying mission assurance using DEEP allows for experimentation as well as the creation of a generic model of mission assurance
Thank You and Questions

Chad.destefano@rl.af.mil
Backups
• Business Process Execution Language (BPEL)
 – Web service standard for specifying interactions
 – Model executable and abstract processes
• Business Process Modeling Notation (BPMN)
 – Graphical representation of business processes in a workflow
• Unified Modeling Language (UML)
 – Use standard UML diagrams to model the system
 – Component, sequence, activity diagrams