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ABSTRACT 

In this paper, a moving target search problem using multiple searchers is investigated 

within a dynamic and uncertain mission environment.  The motion of target and searchers 

is modeled in discrete time and space.  A search region satisfying contiguity constraint 

for search activities is assigned to every searcher for a specified search interval (decision 

interval).  At each time epoch of the decision interval, the searcher’s move is constrained 

only to the neighboring cells within the assigned region.  After the elapse of each search 

interval, the assets may be reassigned. A hidden Markov modeling (HMM) framework is 

used to formulate the asset allocation and search path selection problem as an 

optimization problem of maximizing the expected detection probability (equivalently, 

expected number of detections).  In order to solve this NP-hard problem, we use a greedy 

approach based on the evolutionary algorithm (EA), coupled with the auction algorithm, 

information gain and the Voronoi tessellation approach. An ASW mission scenario 

involving the monitoring of an enemy submarine within a geographic region is used to 

evaluate our approach where we assume that the search region for each asset is 

recomputed periodically. We compare our results with a search path plan that does not 

consider contiguity constraints in search activities.  

Keywords: Search problem, Search allocation, Search path, Auction algorithm, 

Evolutionary algorithm (EA), Voronoi tessellation, Hidden Markov models (HMM) 
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1. Introduction 

1.1 Motivation  

Search problems occur in a number of military and civilian applications, such as land 

mine detection and location, maritime operations (e.g., antisubmarine warfare (ASW)) 

and search and rescue (SAR).  Generally, the search problems can be categorized as one-

sided or two-sided search problems. In a one-sided search problem, the searcher can 

choose his strategy, but the target is passive in the sense that it neither has any moving 

strategies nor does it react to the search.  Typically, search and rescue is treated as a one-

sided search problem. In a two-sided search problem, on the other hand, we allow both 

the target and the searcher to choose their own strategies.  Both stationary and moving 

target search problems are considered as two-sided search problems. An example of a 

two-sided stationary target search problem may occur when the target has strategies such 

as a place of choice to hide or changing movement trajectories.  Most search problems 

involving moving targets are considered as two-sided search problems  [23].   

The ASW mission is a typical example of a two-sided search problem, where the 

attacker and the searcher are aware of the each other’s presence  [23].  Surface, airborne 

and sub-surface ASW platforms are used to search for, detect, classify, track and 

prosecute hostile submarines.  The ISR assets on a surface platform include hull-mounted 

active or passive sonar systems; airborne platforms deploy sonobuoys in various patterns 

to enhance search effectiveness and are capable of extended echo ranging, as well as 

radars that can detect and localize an exposed submarine periscope or mast; and 

subsurface platforms feature hull-mounted or towed-array active or passive sonar systems 

for surveillance.     

The ASW mission environment is characterized by meteorological and oceanographic 

(METOC) conditions which provide the commanders with the relevant information in a 

timely manner for necessary courses of action. Due to the dynamic nature of the 

environment, METOC data must be continuously collected, analyzed and disseminated in 

order to develop predictions. The collected data is used for assessing the impact of the 
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current and forecasted environment on individual sensors and weapon platforms, as well 

as tactics in the form of performance surfaces. The commander is presented with different 

types of information, with different types of uncertainty associated with it, to generate 

plans or evaluate courses of action (COAs), before assets conduct actual ASW search 

activities. Combined use of air, surface, and subsurface assets enable an ASW 

commander to optimally position and assign ASW platforms to maximize the 

effectiveness of search by capitalizing on the ocean’s local acoustic/surface conditions. A 

key challenge in ASW is the development of optimization algorithms that incorporate 

information from multiple sources (e.g., intelligence, environment, and sensor data) for 

asset selection and placement, search path planning, and sensor coordination.   

Santos  [16] formulated the problem of searching for a moving target using multiple 

searchers by maximizing the expected number of detections and applied to ASW problem.  

He developed heuristic and optimal approaches to solve the search problem, where the 

searchers can move in the entire search area, while the searcher’s move is constrained 

only to the neighboring cells at each time epoch.  However, in reality, the strategy may 

not be efficient, since the searchers do not consider the co-searcher’s path or navigation; 

it might result in search conflicts, sensor interference and/or complex searcher 

coordination.  One solution to this problem is to allocate each searcher to a specific 

region, while guaranteeing the contiguity of search activities, before the search activity 

begins.  Consequently, a dynamic search plan for each asset over the assigned region can 

be constructed circumventing the searcher coordination issues.  In addition, as the target 

distribution and/or motion evolve with time, the current asset assignment may not be 

efficient; the assets may need to be reassigned after the elapse of search interval.      

In this paper, a hidden Markov modeling (HMM) framework is used to formulate a 

search path problem over a finite time horizon as an optimization problem of maximizing 

the expected detection probability (or expected number of detections)  [16].  An HMM 

with controllable emission matrices corresponding to each asset is an appropriate way to 

model the search problem, because the target’s motion is concealed and its true state (i.e., 

location) can only be inferred through the observations obtained by the assets. A pattern 

of these observations and its dynamic evolution over time provides the information base 
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for inferring the target existence and its location.  In order to solve the problem, we 

decompose the problem into two sequential phases.  In phase I, we partition the entire 

search area into search regions subject to the contiguity constraint for search activities at 

the beginning of each search interval.  After the partition of the search area, the assets are 

assigned to the search regions, depending on asset capabilities (e.g., sensing capability 

and sweep width).  Using the output of Phase I, a dynamic search plan for each asset is 

constructed over the search interval.  In addition to detection probability, other factors, 

such as risk to high-value assets, may be considered as part of the asset allocation and 

search path plan optimization, leading to a multi-objective optimization problem. An 

ASW mission scenario involving the monitoring of an enemy submarine within a 

geographic region is used to evaluate our approach. We compare our results with search 

path plan without considering contiguity constraint for search activities.  

1.2 Previous Work 

In modeling a target’s likely motion over a time period of interest, all models assume 

that the prior probability distribution of the possible target locations is given (e.g., via 

intelligence) and the objective is to determine a search strategy to maximize the target 

detection probability  [5].  Under the assumption that the target motion strategy does not 

change during the search process, its motion may simply be described by its likely 

locations at each successive time steps. Brown  [5] proposed an optimal search strategy 

for a moving target in discrete space by considering the search object’s motion as 

Markovian and the detection function to be exponential.  The strategy involved 

repeatedly solving a stationary target search problem at each time step.  Another version 

of Brown’s algorithm was given by Washburn  [27], where he generalized it to the class 

of Forward and Backward algorithms applied to a general class of payoff functions. 

Washburn  [25] also investigated the efficiency of Branch-and-Bound methods for solving 

the target search problem.  Algorithms for non-exponential detection functions and non-

Markov motions may be found in  [18],  [19]. 

The search problems considered above assume that asset allocation at each time 

interval can be distributed over the search space regardless of any geometrical and 

5 



15th ICCRTS: The Evolution of C2 

Where Have We Been? Where Are We Going? 

physical constraints.  However, for realistic asset allocation, we should maintain the 

contiguity of search space and minimize the time assets take to travel from one part of the 

search region to another.  In these cases, we have an optimal search path problem, instead 

of an optimal allocation of search effort.  To solve the search problems with path 

constraints (e.g., from the current assigned cell, the subsequent cell that an asset can 

search is constrained to the adjacent cells), Eagle  [8] and Eagle and Yee  [9] proposed a 

partially observed Markov decision process (POMDP) and branch-and-bound-based 

approach for the search problem.  Even though this class of problems does not consider 

contiguous partitioning of a search area among multiple assets, it is still difficult to solve 

them; indeed, these problems are known to be NP-hard  [21].  

 

Figure. 1. Asset allocation satisfying the contiguity constraint for search activities 

Martins  [14] developed an approximation method wherein an upper bound on the 

search path solution can be obtained by changing the objective function to one of 

maximizing the expected number of detections (ED).  This also simplifies the 

formulation, since explicit enumeration of all possible paths is not needed  [14].  Hong 

 [10] proposed a method for the single-searcher path-constrained problem by optimizing 
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an approximation to the non-detection probability computed from the conditional 

probability over a fixed time window.  The problem has been formulated as a shortest 

path problem on an acyclic layered network, where the number of layers is of the order of 

search duration  [10]. 

1.3 Organization of the paper 

The paper is organized as follows.  In section 2, we formulate the integrated asset 

allocation and search path optimization problem by modeling target-asset interactions via 

HMM.  In section 3, the search problem is solved using a greedy approach based on the 

EA, coupled with the auction algorithm  [3]  [4] and the Voronoi tessellation approach. In 

section 4, we apply our model and solution approach to an ASW mission scenario and 

present the analysis results.  Finally, section 5 concludes with a summary. 

2. Asset Allocation and Search Path Model 

2.1 HMM Model  

 

Figure. 2. Search problem using HMM 
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Consider a search area comprised of N M  cells. Suppose there are m assets 

available at time epoch , 1k vT  0,..., 1v T( / )K  and ( ) {1, 2,.., }k m   are the set of 

available assets that are to be assigned to regions satisfying contiguity constraint for 

search activities. An asset i assigned to a specific region moves from its current cell j to 

one of neighbor cells jC at each time epoch ,tk vT  0,..., ( / ) 1,v K T 1,...t T   . The 

target motion and asset observations are modeled using a HMM. A HMM is 

parameterized by a transition probability matrix (k ) , the set of emission matrices , 

and initial probability

( )kB

 . Here, we assume that the HMM parameter sets 

( ) ( ( ), ( ),k k k ),   B   are known a priori.  As shown in Fig.2, a target’s 

move can be modeled by the transition probability matrix

1, 2,...,k  ,K

( )k of the underlying Markov 

chain:  

( ) [ ( )] [ ( ( ) | ( 1) )rj rk k P x k j C x k r       , ( , 1,..., )j r NM            (1) 

where ( )x k

( ) {

is the cell location of the target at time epoch k. We denote the subset of m 

emission matrices, corresponding to each of the m assets associated to cell j, 

as 1( ) ( ) ( )}j j ji jmB k  B k B k B k      M N.  The set of emission matrices for the cells 

is denoted by . Let L denote the number of observation 

symbols. The symbol, measured by asset 

1( ) { ( ) ( )jk B k B    B ( )}MNk B k

( )ju k i  assigned to cell j at time epoch k, is 

denoted by . Evidently, the number of observation 

symbols 

1( ) { ( ),.., ( ),..j j jly k O k O k ( ), ( )}jL iO k

L can be a function of asset . This models a realistic scenario in which 

different assets have different capabilities in generating different observation symbols, 

depending on the assets’ cell locations.  If none of the assets is assigned to cell j at a 

given epoch, we assume that the observed symbol is null (

( )ju k

 ).  

Suppose asset  is assigned to cell j.  Then, the probability of observing 

symbol  is related to the elements of the emission matrix,  via 

( )ju k i

( )jlO k ( )jiB k

( ) [ ( )] [ ( ( ) ( ) | ( ) , ( ) ]

( , 1, 2,..., ; 1, 2,..., ( ( ) ); 1, 2,..., )

ji jlri j jl j

j

B k b k P y k O k x k r u k i

j r NM l L u k i i m

   

   


,                    (2)  

The initial target probability distribution of the underlying Markov states of at time 0t   

is denoted by 
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[ ( (0) )],  ( 1,2,..., )j p x j j NM     ,                              (3)  

2.2 Information State Propagation and Update 

Suppose the target is in cell r at time k.  Let us define ( )i
jD k

1

( )
,i

j

k

 as observable cells when 

asset i is in cell j at time k, and define  as the set of entire observable cells searched 

by the m assets at time k. At time epoch k, we have, for each cell , the 

information set  where

( )D k

{ ,

1,...,j N

NM

M

1 1
1{ , }k k K

k
 

Y U 1 1 1
1} { }k k k

j jh D
U  

k
Y 




( ) (1)
(1)i i

j jh D k D

Y U



.  In cell j, the 

previously observed symbols and the asset sequence used from time epoch  to time 

epoch are defined as        

and  Given the available information, , the 

information state vector 

1t 

( 1)
,..., (i

jh D k
y


 

1 1{ ,k k Y U

1t k 

1 {k
j jU u

1 {k

h
Y y

 
1)}k



}(0), (1),..., (j ju u 1)}.k

( | 1)k k  is the sufficient statistic to infer the target location at 

time epoch k.  Indeed, the information state is the predicted probability, given by  

1

1 1 1 1

( | 1) { ( | 1), , ( | 1)}

                { ( ( ) 1 | , ), , ( ( ) | , )}

                ( ) ( 1 | 1)

T
MN

k k k k

T

k k k k k k

P x k P x k MN

k k k

  



   

    

   

   

Y U Y U T
            (4)  

Then, using observation probability, we obtain the updated information state ( | )k k by 

using the forward algorithm; 

 1 ( ), ( ),

1 ( ),

(1 ( )) ( | 1)
( | )

(1 ( )) ( | 1) ( | 1)

(1 ( )) ( | 1)
             ,  ( )

1 ( ) ( | 1)

i i
f i f i

i
f i

h
jlri h

h m q
flri q vi q D k f A v D k f A

h
jlri h

m q
flri qi q D k f A

b k k k
k k

b k k k k k

b k k k
h D k

b k k k




 





    

  

 


  

 
 

 

  

 



  (5)      

1 ( ),

( | 1)
( | ) , ( )

1 ( ) ( | 1)i
f i

h
h m q

flri qi q D k f A

k k
k k h D k

b k k k





  


 

  

                                 

(6) 

Note that (0 | 1)    .
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3. Search Region Partition and Search Path Problem Formulation and 

solution approach  

3.1 Problem Formulation  

Given total search time of K time units, we want to define the allocation area 

 of each asset and the search path of each asset ( 1iA vT 

( )ij k

),  1,..., ,i m 0,..., ( / )v K T

 ,  1,..., ,i m 1,...,j NM during search interval ,  1,...,k vT t t T   , maximizing 

the detection probability of target.   Here, T is the search interval, at the end of which 

search area may be re-partitioned among the assets, and assume, for simplicity that K is 

divisible by T1.   Martins  [14] developed an approximation method wherein an upper 

bound of the search path solution can be obtained by changing the objective function to 

the problem of maximizing the expected number of detections (ED). This also simplifies 

the formulation, since explicit enumeration of all possible paths is not needed  [14].  Then, 

using ED, we can formulate a search path problem as follows: 

( 1)

( / ) 1

0 1 1

1

max ( | 1) ( ) ( )

      where , 0,..., ( / ) 1,  1,...,

s.t. ( 1) , , , 0,..., ( / ) 1                                         

ii Tv j

K T T m
h

h jlri ij
v t i j A h D

m

i i j
i

k k b k k

k Tv t v K T t T

A Tv A A A i j v K T


 





    





    

       

   



( 1)

( 1) ( 1)

       (a)

   ( 1) 1,  ,  0,..., ( / ) 1,                                                                  (b)

   ( ) ( 1) 0,  ,  2,..., 1,  0,..

i Tv

j
i Tv i Tvj

ij
j A

ij iC
j A C A

vT i v K T

vT t vT t i t T v



 



 



 

    

        



 

( 1)

., ( / ) 1,    (c)

  ( ) 1,  ,  1,..., ( / ) 1                                                                        (d)

      Asset  should travel to all regions of  without crossing

i Tvj

ij
C A

i

K T

vT i v K T

i A






   
over ,                        (e)

      ( ) {0,1},  1,..., , 1,..., , 1,...,                                                          (f)
n

ij

A i n

k i m j MN k K


   

(7)      

                                                 

1 When T =1, we have a truly dynamic search area partitioning and search path optimization.  When T = K,  we have 
static search area partitioning and dynamic search path optimization.  When 1 < T < K, we have a semi-dynamic search 
area partitioning and dynamic search path optimization.    

10 



15th ICCRTS: The Evolution of C2 

Where Have We Been? Where Are We Going? 

The constraint (a) ensure that the assets are assigned to mutually exclusive areas (i.e., 

no two assets are assigned to the same region).   The constraint in (e) implies the 

contiguity constraint for search activities.  The constraints (b), (c), and (d) are used to 

ensure that the se chear r’s move is constrained only to the neighboring cells within the 

assigned region (i.e., if asset is in the cell j, next move should be constrained to 

neighboring cells jC ).  

In order to solve the problem, we use a greedy approach of decomposing the problem 

into two sequential phases.  In phase I, we partition the search area into search regions at 

the beginning of each search interval, subject to contiguity constraint for search activities.  

Using the output of Phase I, a search plan is created for each asset over the search 

3.2 Phase I: Asset allocation (Search Region Partition)   

interval.  In next section, we describe the approach in detail.  

 

Figure.3. Illustrative Example of Phase 1 

Phase I employs the EA  [6] coupled with the Voronoi tessellation approach for 

partitioning and the auction algorithm for the assignment problem. The auction algorithm, 

proposed by Bertsekas et al.  [3],  [4], is the most efficient algorithm for solving the (2-D) 

assignment problems, where it consists of a bidding phase and an assignment phase and 

an optimal assignment is found by employing a coordinate descent method on the dual 

function.  Here, Voronoi tessellation is used for ensuring contiguity and to obtain a near-

optimal solution to an otherwise intractable problem. The Voronoi (or Dirichlet) 

tessellation is a partition of the search space into cells such that each of the cells consists 
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of a

 to the set o

 is genera

N

rea closer to one particular center of the cell (also called Voronoi site) than to any 

other site based on some metric. Typically, the Euclidean distance metric is used.   

In EA, each individual in the population corresponds f centers of Voronoi 

cells. Voronoi tessellation for each individual ted at each epoch by calculating 

the distance between the centers of the search cells j M  and the 1,..., centers of 

Voronoi cells, as shown in Fig.3. Each cell 1,...,j MN  is assigned 

( 1),  iA Tv

 to the closest center 

of Voronoi cells. Given the partitioned search area 1,...,i m  , at time 

epoch , the asset allocation problem

(8) 

dimensional (2-D) 

1k Tv   can be written as:   

( 1)1

1

max ( | 1) ( ) ( )

where 1, 0,..., ( / ) 1

s.t.  ( ) 1,  ,  0,..., ( / ) 1                                          (a)

      ( ) | ( 1) |,  ,  

ii Tv j

m
h

h jlri ij
i j A h D

m

ij
i

MN

k k b k k

k Tv v K T

k j v K T

k A Tv i v


 





  





   

   

  

  



 0,..., ( / ) 1                           (b)

       (c)

K T 
1

ij i
j

      ( ) {0,1},  , ,  0,..., ( / ) 1                            ij k i j v K T     

     The problem in (8) involves two- assignment or a weighted 

bipartite matching problem, where one set of nodes corresponds to assets 1,...,i m  and 

the other set to partitioned search area ( 1),  1,...,iA Tv i m  . When allocating m assets 

among m partitioned search areas at each time epoch 1k Tv  , one needs to consider the 

m x m gain matrix, which is generated for each asset - partitioned search area pair by 

evaluating the objective function in (8) for each asset i. The auction algorithm is used 

here to obtain an assignment for maximizing the objective function in (8). A simple 

illustrative example is shown in Fig.3.  Thus, each individual’s fitness is the objective 

function value associated with the assignment problem of allocating assets to Voronoi 

tessellation. The individuals at the next iteration are generated based on current 

 until the allocation solution converges. 

Note that the information state 

individual’s fitness, and this process continues

( | 1)k k   is not updated during asset allocation in (8).  
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3.3 Phase II: Search Path   

Considering the search path constraint (e.g., from the current assigned cell, the 

subsequent region that an asset can search is constrained by adjacent cells), we can 

formulate the search path optimization for search interval k Tv t  , as 

follows:     

   (9)           

1,...,t T

( 1)

( 1)

1 1

max ( | 1) ( ) ( )

      where ,  1,...,

s.t. ( 1) 1,                                                                         (a)

      (

ii Tv j

i Tv

m T
h

h jlri ij
i t j A h D

ij
j A

ij

k k b k k

k Tv t t T

vT

vT


 









   





  

 



  



( 1) ( 1)

( 1)

) ( 1) 0,  ,  1,..., 1,     (b)

     ( ( 1)) 1,  ,                                                               (c)

        ( ) {0,1},  1,..., ,

j
i Tv i Tvj

i Tvj

iC
j A C A

ij
C A

ij

t vT t i t T

v T i

k i m j







 



 



      

  

  

 


1,..., , 1,...,       MN k K

 

 Figure.4. Crossover process for next generation of search path 
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Figure.5. Mutation process for next generation of search path 

We solve the search problem via EA. In EA, each individual in the 

population corresponds to a s h.

optimal 

earch pat   The individuals undergo crossover and mutation 

processes to reproduce individuals for the next iteration.  If parents A and B are selected 

for crossover and if they share any common genes, the child can be produced by 

arent A with that of parent B as shown in Fig.4.  For 

mu

ding asset. The 

information state 

exchanging the segments of p

tation, a gene is randomly selected and mutated by displacing it from the original 

location (e.g., left, right, up or down), and additional genes are introduced to maintain a 

contiguous search path.  In addition, some genes are removed to satisfy the total search 

effort constraint. The process is shown in Fig.5. The fitness of the new individuals is 

evaluated by using the objective function in (9) for the correspon

( | 1)k k   is updated according to best individual’s search sequence 

generated during time epoch k vT t  , 1,...,t T .  

4. Computational Results 

We consider an ASW mission scenario as an application of the proposed approach.  

The scenario involves monitoring an enemy submarine within a geographic region. We 

assume that searchers are provided with an initial target distri

information state) and target motion profile (e.g., transition matrix).  The search assets 

detect a target submarine by using active sonar.  

bution (e.g., initial 
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4.1 Modeling the Emission Matrix (Observation Probability) 

Active acoustic systems generate sound using an underwater projector. These sound 

waves propagate through the ocean to the target, reflect or scatter from the target’s hull, 

and then propagate through the ocean to the receiver  [22]. The active sonar equation is 

given by (asset index i, asset location j, target location is r, observation from cell h, are 

omitted for clarity): 

) ,                          (10) 

Here, 

projector, TLST indicates the transmission loss from source to target, TLTR indicates the 

to rec

lect, o scatter, which r

dex (DI) is the array gain 

of the receiver sonar system, and DT is the detection threshold of the receiver sonar 

system.  

The observation probability is modeled by incorporating the active sonar equatio

detect a transiting enemy submarine. Suppose the position of the enemy submarine is in 

cell r at time k. Let us define 

( ) (ST TRSE SL TL TL TS NL DI DT      

SL (Source level) represents the amount of sound radiated by the sonar’s own 

transmission loss from target eiver. The target strength (TS) is the ability of the 

target to ref r epresents the energy back to the receiver. The level of 

noise in the surrounding sea is denoted by NL, the directivity in

n to 

( )i
jD k  as observable cells when asset i is in cell j at time k 

and define ( ),i
jD k  , 1,...,ij A i m  as the set of observable cells of asset i at time k. Then 

observation probabi f asset i ssigned to cell j is given by: 

( ( ) 1| ( ) , ( ) ( / ( )); ( )                                      ( )

( ( ) 0 | ( ) , ( ) ) 1  ; ( )                                                           

r i

r i
r j rji j

P y k x k r u k SE A r D k a

P y k x k r u k i q r D k

    

       ( )

( ( ) 0 | ( ) , ( ) ) 1 ( / ( )); ( ), ( ),       ( )

( ( ) 1| ( ) , ( 1 ; (

r r i i
h j hji hji i j j

r i
h j hji j

b

P y k x k r u k i q SE A h D k r D k r h c

P y k x k r u k q h D k

        

   

(11)   

lity o  a

                            

where signal excess (SE) is assumed to be a normal random variable with mean 0 and 

) r
r j rji rji i ji q 

) ) ), ( ),                                     ( )

if ( ( ), ( ) ) 

i
j

i
j j

i r D k r h d

h D k u k i

   

     null observation ( )                                                                ( )e 
 

standard deviation ( )iA , and  is the cumulative normal distribution  [11]. ( ) 1y k   

represents detection and ( ) 0y k  represents non-detection. In the context of detection 

theory, equation (a) is detection probability, equation (b) is miss probability, equation (c) 
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represents non-existence target probability, and equation (d) is false alarm probability. 

The standard deviation ( )iA is modeled as: 

1

( )   , 1,... ,  ,  i
i i jm

j
j

A
A b i m i j A A 



                            (12)   

where  and b

A A
                            

  are used as scale factors. Note that ( )iA  increases as the area assigned to 

an asset i is increased.  Typically, ( )iA is 3-9 dB. 

4.2  Interference Model for active sonar  

Suppose assets i are conducting the search activity in non-overlapping areas  and w  

iA  and wA  

as shown in Fig.6.  W

respectively, where asset 

 assum

on (e.g.,

i and w are in cells j and l at time k. Then, the 

interference region is defined as the intersection of observable cells  , 

e e that assets do not observe any valuable inform

terference regi

( ( ) ( ))i w
j lD k D k 

ation within 

the in ( ) null observation ( )y k   ) .  

 

 Figure.6. Interference model 
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4.3 Example 1:  A Single Searcher and A Single Target 

Here, we consider a single searcher problem modeled by Eagle  [8], with different 

path constraints, where the searcher can only observe a cell ( )jD k j  occupied at time 

epoch k. The objective here is to maximize the detection probability.  This single searcher 

problem can be considered as a simplified version of our integrated asset allocation and 

path planning approach, since one asset is allocated to the entire search area which need 

not be partitioned.  It means that only Phase II is used to obtain a search path in single 

searcher problem.   

Eagle [8] formulated the problem as a finite horizon POMDP and employed dynamic 

programming recursion to find the optimal search path. For detailed problem formulation, 

approach, and computational times needed to solve the problem, the reader is referred to 

 [8]. In Eagle’s model, the searcher’s move is constrained to 5 move options (i.e., no 

move, up, down, left, right), while we assume that the searcher’s move is constrained 

only to 4 neighboring cells (i.e., up, down, left, right), that is, we have one less option in 

our problem. The total search time allotted to each asset is K=10 time units, and the 

search asset has perfect observation capability, that is, if the asset and target occupy the 

same cell, the target is detected. The target remains in the previously occupied cell with 

probability 0.4 and moves to an adjacent cell with probability 0.6/(the number of adjacent 

cells). Table I shows the results. Note that when the searcher initiates search in cell 1, the 

optimal detection probabilities are the same as in  [8], which implies that the optimal path 

does not include ‘no move’ option.  However, if the search is initiated in other cells, the 

detection probability differs in both cases because of the fact that the searcher has the 

freedom to wait in any cell in the Eagle’s model, whereas we do not allow it in our 

model; this results in a slightly lower detection probability in our case. Results are 

obtained on a 2.20GHZ CPU, and 2GB RAM memory PC.  Population size of GA is set 

as 20, and the number of generations is set as 100.  We measure the computation time by 

averaging over 50 Monte Carlo runs and the calculations required approximately 12

seconds for

 

 each starting cell.    
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Table.I. Detection Probabilities for 5 and 4 next move options    

4.4 Example 2:  Detection probability as a Function of Emission Probability 

The sea state (e.g., wave height, period, power spectrum) impacts sensor capabilities 

(i.e., emission matrix).  In this section, we show how our model can be used to analyze 

the effects of changes in the observation (emission) probabilities on the probability of 

detection2.  Here, we reconsider the single searcher problem modeled by Eagle  [8], with 

4 move options (i.e., up, down, left, right). For illustrative purposes, we model the 

observation probability of asset i assigned to cell j as exp( )ji aq    where 0a 

 corresponding to the

is the 

environmental factor.   Fig.7 shows the  

changing environmental factor 

detection probability

0 1a  , where the s

1 and 2, respectively 

                                                

tarting cells of the searcher are cell 

 

2 Our model also facilitates the analysis of the effects of changes in target transition dynamics. 
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 Figure.7. Change in target detection probability with log 1/ q   a ji

When 0a  , the scenario is exactly the same as in the previous example. As 

a increases from 0 to 1, the detection probability decreases almost linearly with a . 

However, note that a  is related to the logarithm of the inverse of observation probability 

via  log 1/a jiq  .  Thus, the detection probability is proportional to log( qij) in this 

case.   Although not discussed here, our model accommodates time varying transition and 

emission matrices. 

4.5 Example 3: Multiple Searcher Sc

For multiple searcher mission scenario, we assume a search area comprised of 20x20 

cells and we have 3 equally capable search assets (e.g., 9 cells are observable with equal 

observation probability). The SE for detection probability (non-existence target 

enario   

probability) is set to 4.3 (-4.3) and 3.4 (-3.4) for an occupied cell and the eight 

neighboring cells respectively. In (12), b is set to 2.5 and   is selected as 6.  The 

detection probability is used as the only objective f aximized.  The 

probability for the initial target position 

dP unction to be m

(0 | 0)  is set as uniform over the entire search 

area. The total search time allotted to each asset is K=40 time units, and the assets may be 

reallocated at time k=20, i.e., at T =20.  We assume that the searcher’s move is 

constrained only to the neighboring cells (i.e., up, down, left, right) and the target 
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transition probabilities among neighboring cells are distributed uniformly. Then, the 

target transition probability matrix   can be modeled as a 400x400 matrix as shown in 

Fig.8.  We set the population size of EA as 20 and the number of generations (iterations) 

as 400.  Fig.9 shows first asset allocation and information state (1|1)  at time k=1.  

Fig.10 shows the information state (10 |10) and (20 | 20) . After asset reallocation at 

k=20, the information state (30 | 30) and (40 | 40) are shown in Fig.11.  Intuitively, 

search path of the asset is to track h ghly uncertain cells (e.g., red cells in Figs. 10  

11).  The search paths of assets obtained by ensurate with 

our intuition. 

i  and

using our algorithm are comm

 

Figure.8. Search path test based on probability map 

 

Figur  k=1 e.9. Assignment at k=0 and information state at time
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Figure.10. Information state at time k=10 and k=20 

 

k=30 and k=40 Figure.11. Information state at time 

rate defined by  

4.6 Comparison of search path planning with and without pre-assigned search regions 

(Phase I) for assets   

Here, we compare search path planning for assets with and without pres-assigned 

search regions generated by using Phase I. For a valid comparison, we maintain the same 

search effort as the search area is varied.  For this, we change the search time for the 

same number of assets (or number of assets for the same search time) so that the coverage 

Coverage rate
Map size

K m
                                                (13) 
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is the same.   Here m is the number of assets and K is the number of search time steps.  

Here, the coverage rate is set as 0.6 and the search activity is conducted by 4 assets 

having equal search capabilities (e.g., 9 cells observable, equal observation probability).  

The search time K is determined by using (13), as map size changes from 10 x10 to 16 x 

16.  Other parameters (e.g., SE, b, and  ) are the same as used in the previous example.  

Population size of GA is set as 20, and the number of generations is set as 2000.  Note 

that we do not consider the traveling cost due to the

 

 asset reallocation, in this experiment. 

Fig.12 shows the scaled gain, by normalizing the cost function in (9) without pre-

assigned asset allocation regions relative to one with pre-partitioned search regions. The 

search path planning with pre-assigned search region for each asset has approximately 

10~20 % higher gain as compared to one using search path planning without pre-assigned 

asset search regions. Given a limit on the population size and number of generations, the 

computational complexity for each asset is significantly less when the search area is 

partitioned and the total search time of K time units also breaks into  search 

intervals. This is because the computational complexity grows quadratically with the 

number of cells and linearly with the search time.   

( / ) 1K T 
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Figure.12. Comparison of search path planning with and without pre-assigned asset 

allocation area 

5. Conclusion  

In this paper, a hidden Markov modeling (HMM) framework is used to formulate 

search path problem

 of monitoring an enemy 

submarine in a given search area. We quantify the value of partitioning the search area 

mong assets by compare our results with a search plan without considering the 

 for search activities. Although, our pre-assigned search path 

approach does not guarantee an optimal solution, it has the ease of finding a near-optimal 

We plan to develop extensions to HMM-based search path planning model to handle 

e strategic interactions among multiple searchers and targets, using game theory.  An 

dvantage of using game theoretic approach for handling intelligent adversary is the 

rationality assumption that the gain/loss to the searcher or target is through payoffs.  We 

ese extensions in the future. 

 

bers at Aptima (Dr. 

 

 of maximizing the expected detection probability. We propose a 

search strategy satisfying contiguity constraint for each asset’s search activities.  This 

strategy uses a greedy approach based on the evolutionary algorithm (EA), coupled with 

the auction algorithm, information gain and the Voronoi tessellation approach. Our 

approach is simulated using an ASW mission scenario

a

contiguity constraints

solution with significantly less computational effort for an intractable optimization 

problem.  

th

a

plan to pursue th
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