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Abstract 

Information systems are increasingly pervasive in our lives, and are becoming 
increasingly sophisticated as technology evolves. This has resulted in an ever-
growing complexity that makes interoperability a major issue. We argue that 
addressing the interoperability problem requires consideration of at least three 
distinct aspects of data: syntax, semantics, and pragmatics. The syntactical 
dimension, which provides the link between the data and its representation, is 
already well understood. The semantic dimension provides the link between the data 
and its meaning. Ontology engineering addresses this aspect. Technologies and tools 
for ontology engineering are under active development. Current-generation semantic 
technology lacks a principled way of representing uncertainty, a requirement for 
many domains of interest. The pragmatic dimension provides the link between the 
data and its use. Pragmatic frames, in close relationship with ontologies, address this 
dimension both in its static and dynamic aspects. 

This paper presents our research on pragmatics and probabilistic ontologies, which 
are integrated in a coherent, mathematically sound computational environment via 
the System Entity Structure (SES) architecture. The key objective is to present a 
principled theoretical framework for seamless integration through a scalable high-
level knowledge fusion methodology. 

I Motivation: The Knowledge Integration Challenge 

Networked systems are becoming ubiquitous across a wide array of human activities, 
growing ever more complex with each passing year. Complexity increases not as an end in 
itself, but as a side effect of success. New capabilities are implemented, new technologies are 
added, scope is broadened, specialization increases, larger problems are tackled -- and 
complexity grows.  Because of complexity creep, success can be a mixed blessing. An 
intricate but capable system is a blessing in its ability to support complex user operations, but 
it can become a curse when the need arises to interoperate with other equally complex 
systems.  

As an example, disaster relief operations engage players such as governmental agencies, 
private companies, NGOs, military, law enforcement volunteers, and many others whose 
numbers and diversity make command and control (C2) a great challenge. In this 
environment, a key issue is to provide information technology support for rapid and accurate 
decision-making, which involves finding, integrating, and continuously converting vast 
amounts of heterogeneous data into actionable information. Effective use of these resources 
can lead to more informed decisions and contribute to the success of the overall operation. 
However, this can only be achieved by addressing the challenges of: (1) enabling 
interoperability among diverse systems and data repositories; (2) incorporating a wide variety 
of traditional and non-traditional types of data coming from geographically dispersed 
sources; and (3) providing the ability to process massive volumes of noisy, incomplete and 
uncertain data in a timely manner.  



Advances in connectivity and computation alone are insufficient to meet these challenges. 
The sheer volume of data creates informational and cognitive bottlenecks. Incompatible 
formats and semantic mismatches demand tedious and time-consuming manual processing at 
various points in the decision cycle. As a result, massive amounts of potentially relevant data 
remain unexploited, and decision makers’ precious cognitive resources are too often focused 
on low-level manual data integration rather than high-level reasoning about the situations to 
be addressed. New approaches are needed to bridge the gap from data interchange to 
knowledge interchange, to free human decision-makers from information overload and low-
level manual tasks, and to provide them with actionable, decision-relevant information. 

Our approach is to achieve true high-level knowledge interchange by leveraging the 
unexplored synergistic potential of current state-of-the-art approaches to interoperable 
systems. More specifically, the main thrust of the research is to merge probabilistic ontologies 
with pragmatic frames so to establish a consistent framework that can be applied to many 
domains of application. Synthesizing these leading edge technologies is by itself a major 
challenge with a great potential to advance science. A second, equally ambitious goal is to 
move towards a general theory of high-level knowledge integration. 

Research on the subject of information fusion has focused primarily on specific application 
areas. The bulk of research effort has concentrated on lower-level data alignment (e.g. multi-
sensor data fusion, syntactic protocols, distributed simulation, etc), on semantic mapping 
solutions (e.g. Semantic Web approaches, specialized semantic mapping solutions, etc), or 
other topics that do not fully address the fundamentals of high-level knowledge integration. 
This gap has been recognized and there have been some efforts to address it (e.g. [1]). 
However, research on this subject is still in its infancy.  

In other words, although some of the above issues have been addressed in an isolated 
fashion, more has to be done towards a solution for the problem of automated high-level 
knowledge fusion. This is a gap that has been identified in applications of complex 
networked systems, but has not been addressed in its fundamental aspects with the academic 
rigor necessary to produce a full-fledged theory and scientific discipline. Our aim is not only 
to bring about important theoretical and practical advances through our research, but in 
addition, to foster the development of a rigorous scientific discipline of complex systems 
integration.  

Following this initial motivation on the problem of Knowledge Integration for complex 
endeavors, section 2 provides an overview of the current research regarding interoperability. 
In section 3 we present the main concepts, methods, and technologies behind our approach, 
emphasizing the relevant issues in merging probabilistic ontologies with pragmatic frames. 
Then, section 4 illustrates how our approach would be applied to a complex endeavor, by 
means of a case study inspired by the disaster relief operations following hurricane Katrina. 
Section 5 provides a brief overview of our general approach for integrating the complex suite 
of technologies we are dealing with. Section 6 is a short discussion of our research. 



II. BACKGROUND AND RELATED RESEARCH 

II.1 Theories of Interoperability 

There are some proposed theories that focus on assessing the interoperability level of distinct 
systems. An example is the two-level theory of interoperability by Dahmann et al. [2] or 
Tolk’s Levels of Conceptual Interoperability Model (LCIM) [3]. These theories build up from 
key research ideas that shaped the field of data alignment. The first of these ideas came from 
the work by Zeigler in 1976 [4] on the Discrete Event System Specification (DEVS), which is 
a mathematical formalism for specifying and composing components into systems. DEVS is 
used to describe components across a spectrum that ranges from mathematical expressions 
and mathematical approximations to discrete approximations and discrete interpolation, with 
the discrete aspects of the DEVS spectrum executable on a digital computer.  The descriptive 
range allows DEVS to cope with the specification of components across several levels. 

Dahmanm [2] asserted that interoperability occurs in levels, while Tolk [3] and Turnitsa [5] 
further lend support to the idea of interoperability levels by specifying the LCIM 
classification. There, each increase in the level of interoperability gives rise to a 
corresponding increase in the density of information that is exchanged.  For example, the 
shift from the syntactic to the semantic to the pragmatic level of interoperability brings a shift 
from “Which format?” to “What is going on?” to “How can/should I respond?” Each level 
presupposes and requires the levels below it. At the syntactic level, the systems are able to 
interchange data; at the semantic level, they attach the same meaning to the data being 
interchanged; the pragmatic level, additional context or information is exchanged to enable 
appropriate action to be taken. Tolk et al. [6] provides an in depth review into each of the 
LCIM complementary theories of model based data engineering, process engineering and 
constraint-assumption engineering.  

Page et al. [7] address the issue from a process-centric perspective and propose a framework 
for the broader simulation interconnection problem based on the ideas of capability maturity 
models (CMM) [8, 9]. They argue that the problem should be seen from three distinct 
dimensions: composability, interoperability, and integratability. Composability between two 
models is achieved when they share compatible objectives and can be directly related with 
the LCIM’s conceptual interoperability level. Along the same lines, interoperability is the 
ability of two models to exchange data or services at run-time, and is directly related to the 
LCIM’s Dynamic, Pragmatic, Semantic and Syntactic levels. Finally, integratability is the 
ability of configuring and modifying a set of components to make them interoperable and 
possibly composable, and is directly related to the LCIM’s technical level.  

While other models of interoperability such as the Levels of Information Systems 
Interoperability Model (LISI) [10] or the NATO Reference Model of Interoperability (NMI) 
[11] exist, these models address only limited specification of higher levels of interoperability.  
The LCIM, by considering alignment and harmonization of data, provides the required 
theoretical framework to explore interoperability at a higher level. 



Although our research is not specifically aimed at defining taxonomies for interoperability, 
the LCIM levels are incorporated into our framework for high-level information fusion using 
probabilistic ontologies (POs) [12]. As an example, our use of pragmatics and POs addresses 
all the LCIM levels (syntax, semantics, pragmatics, and dynamic).  

II.2 Ontologies and Uncertainty 

As people started to realize that syntax-based solutions were not enough to satisfy the 
increasing need for interoperable systems, they started to look for semantics as the silver 
bullet to satisfy their goals. As a result, ontology engineering became a major topic of 
interoperability research. Since its adoption in the field of Information Systems, the term 
ontology has been given many different definitions. A common underlying assumption is that 
the formal foundation for knowledge representation and reasoning would be classical logic 
[13]. However, classical logic provides no consistent support for plausible reasoning, which 
we see as a major requirement to semantic interoperability applications. 

The de facto standard for developing ontologies is OWL, a W3C recommendation [14]. 
OWL has its roots in its web language predecessors (i.e. XML, RDF), and in traditional 
knowledge representation formalisms that have historically not considered uncertainty. 
Examples of these formalisms include Frame systems [15] and Description Logics, which 
evolved from the so-called “Structured Inheritance Networks” [16]. This historical 
background somewhat explains the lack of support for uncertainty in OWL, a serious 
limitation for applications in uncertainty-laden domains such as genetics or medicine. In fact, 
virtually all of the current ontology formalisms are based on classical logic, and SW 
languages such as OWL provide no consistent support for uncertainty representation or 
plausible reasoning. 

This lack of support for uncertainty can perhaps be justified in closed-world systems designed 
to perform well-defined tasks, for which clear and unambiguous vocabularies can be 
constructed. But the Semantic Web vision as described in Benners-Lee et al. [17] requires 
heterogeneous systems to interoperate in an open world. Inevitably, vocabularies that are 
adequate for a single stand-alone application break down when required to interoperate with 
systems employing different vocabularies originally tailored to different tasks.  Inevitably, 
there is incomplete and partial overlap of terminology and concepts. The same phenomenon 
occurs in virtually all complex endeavors in which two or more systems must interact within 
an environment similar to the one faced by SW applications. 

Probabilistic ontologies enable representation of knowledge in domains characterized by 
uncertainty. As such, they improve the quality of service descriptions, enable more thorough 
analysis of service composition opportunities, and provide a theoretically sound 
methodology for semantic mapping under uncertainty.   

III ENABLING HIGH-LEVEL KNOWLEDGE FUSION 

As previously mentioned, there is no established scientific theory of, and no general-purpose, 
theory-based methodology for high-level information fusion. Therefore, our vision on how to 



enable high-level fusion relies on a multi-disciplinary approach. The component 
technologies underlying our approach are described below. 

III.1 Multi-Entity Bayesian Networks 

Multi-entity Bayesian Networks (MEBN) [18] is a probabilistic logic with first-order 
expressive power.  MEBN was developed to meet the representational and computational 
challenges inherent in higher-level multi-source fusion and situation awareness. Specifically, 
MEBN can represent degrees of plausibility for any hypothesis that can be expressed in first-
order logic. Its basis in directed graphical models gives it a natural representation for cause 
and effect relationships. Its built-in capability for context-specific independence provides a 
natural way to represent contextual factors important for hypothesis management, such as 
conditions under which a hypothesis can be pruned because it has little or no impact on 
conclusions of interest. MEBN also supports a natural representation for essential categories 
of uncertainty for general situation awareness, such as uncertainty about entity existence (i.e., 
is a report a false alarm); uncertainty about the type of entity; and uncertainty about 
functional relationships (e.g., which entity gave rise to a report).  Its basis in Bayesian theory 
provides a natural theoretical framework for learning with experience. Its graphical 
representation supports an intuitive interface for specifying probabilistic ontologies. Finally, 
its modular representation formalism supports adaptability, by allowing changes to be made 
to parts of an ontology without affecting other parts or other ontologies, and composability, 
by allowing problem-specific models to be constructed “on the fly,” drawing only from those 
resources needed for the specific problem.  

MEBN represents the world as made up of entities that have attributes and are related to 
other entities. Knowledge about the attributes of entities and their relationships to each other 
is represented as a collection of MEBN fragments (MFrags) organized into MEBN Theories 
(MTheories). An MFrag represents a conditional probability distribution of the instances of its 
resident random variables (RVs) given the values of instances of their parents in the fragment 
graphs and given the context constraints. RVs are graphically represented in an MFrag either 
as resident nodes, which have distributions defined in their home fragment, or as input 
nodes, which have distributions defined elsewhere. Context nodes are the third type of 
MFrag nodes, and represent conditions assumed for definition of the local distributions. 
Figure 1 depicts the generic structure of an MFrag.  

 
Figure 1 – The basic components of an MFrag 



Typically, MFrags are small, because their main purpose is to model “small pieces” of 
domain knowledge that can be reused in any context that matches the context nodes. This is 
a very important feature of the logic for modeling complex situations — the knowledge 
representation version of the “divide and conquer” paradigm for decision-making. 
Decomposition is accomplished by modeling a complex situation as a collection of small 
MFrags, each representing some specific element of a more complex situation. The 
additional advantage of MEBN modeling is the ability to reuse these “small pieces” of 
knowledge, combining them in many different ways in different scenarios. A coherent 
collection of MFrags is called an MTheory. An MTheory represents a joint probability 
distribution for an unbounded, possibly infinite number of instances of its random variables. 
This joint distribution is specified implicitly through the local and default distributions within 
each MFrag, together with the conditional independence relationships implied by the 
fragment graphs. Figure 2 depicts the Starship MTheory, a toy example devised as part of the 
original work on PR-OWL probabilistic ontologies [12], which we describe in the next 
section. 

 
Figure 2 – The starship MTheory 

Automated methods for reasoning about such complex situations require expressive 
representation languages.  Many real-world operational scenarios in which high-level 
knowledge fusion is performed typically involve a high degree of uncertainty, and the 
available data are inevitably noisy and incomplete. It is essential to be able to represent and 
reason with uncertainty. A MEBN domain model implicitly represents a joint probability 
distribution over situations involving unbounded numbers of entities interacting in complex 
ways.  

Recent years have seen rapid advances in the expressive power of probabilistic languages 
(e.g.,  [18-26]).  They have the potential to trigger major advances in the ability to represent 
and reason about complex situations. In comparing MEBN with other expressive probabilistic 
languages [19-26], only BLOG [25], Markov logic [20-22], and MEBN have full first-order 
expressive power. BLOG is based on a text-style programming language for specifying 



complex probability models, whereas MEBN provides a natural graphical interface for 
specifying probabilistic relationships and distributions. In Markov logic, a probability 
distribution is defined by attaching numerical weights to first-order formulas.  A probability 
distribution can be specified for an existing first-order knowledge base simply by attaching a 
weight to each formula in the knowledge base [20]. The result is an undirected graphical 
model in which nodes are ground atoms (hypotheses about specific domain entities) and arcs 
connect atoms that appear in groundings of the same formula in the knowledge base. 
MEBN’s directed representation and support for context-specific independence allow it to 
represent cause and effect relationships, to support predictions about the effects of 
interventions [27], and to support computationally efficient hypothesis management 
methods. Furthermore, MEBN can represent both discrete and continuous distributions, an 
essential capability for fusion systems. Markov logic does not share these representational 
advantages. MEBN is the logic behind the probabilistic ontology language, PR-OWL. 

III.2 PR-OWL Probabilistic Ontologies 

Ontologies provide the “semantic glue” to enable knowledge sharing among distinct systems 
cooperating in data rich domains such as Predictive Analysis.  An ontology specifies a 
controlled vocabulary for representing entities and relationships characterizing a domain. 
Ontologies facilitate interoperability by standardizing terminology, allow automated tools to 
use the stored data in a context-aware fashion, enable intelligent software agents to perform 
better knowledge management, and provide other benefits of formalized semantics. 
However, effective higher-level knowledge fusion requires reasoning under uncertainty, and 
traditional ontology formalisms provide no principled, standardized means to represent 
uncertainty. Interest is growing in combining semantic technology with probabilistic 
reasoning (e.g., [28-36]). Probabilistic ontologies provide a principled, structured, sharable 
formalism for describing knowledge about a domain and the associated uncertainty and 
could serve as a formal basis for representing and propagating fusion results in a distributed 
system.  The PR-OWL probabilistic ontology language [12, 28-32] is founded in MEBN logic 
and has the expressive power to represent any first-order Bayesian theory. PR-OWL provides 
the representation power required for information fusion and prediction services in net-
centric environments.  PR-OWL ontologies interoperate with the non-probabilistic part of 
ontologies written in the World Wide Web Consortium’s standard ontology language OWL, 
thus facilitating interoperability with other semantically aware systems. In this proposed 
research, PR-OWL is used to design a distributed high-level fusion framework that performs 
approximate coherent Bayesian reasoning on problems of greater complexity than previously 
possible.  UnBBayes-MEBN [37, 38] is an open source, java-based graphical editor for PR-
OWL  ontologies being developed in conjunction with the University of Brasilia. Figure 3 
shows the current UnBBayes-MEBN graphical interface for developing MTheories displaying 
an MFrag of the above-mentioned Starship MTheory. 



 

Figure 3 – UnBBayes-MEBN Graphical Editor 

III.3 Spatio-Temporal Hypothesis Management 

As noted above, recent work on combining probability with first-order logic has expanded 
the range of problems that can be tackled by automated fusion systems. However, for 
problems of the scale required for high-level information fusion, exact evidential reasoning is 
generally intractable. Traditional fusion systems cope with complexity by decomposing the 
problem into hypothesis management and inference. Hypothesis management produces an 
approximate model that achieves tractability by combining similar hypotheses and/or 
pruning unlikely hypotheses and tracks. For the higher-level fusion problems considered 
here, the concept of a track must be generalized to a complex spatio-temporal entity that is 
related to and interacts in varied ways with other evolving spatio-temporal entities. An 
expressive Bayesian logic such as MEBN permits the expression of sophisticated hypotheses 
about unbounded numbers of entities and their interrelationships. In a given situation, a 
situation-specific Bayesian network (SSBN) can be constructed from the generic MEBN 
domain model to reason about the actual entities involved. In general, there will be 
uncertainty about the number of entities in the situation, their relationships to each other, 
their past and future behavior, and the association of reports to entities. Hypothesis 
management for MEBN domain models must be appropriately generalized to apply to 
complex interacting spatio-temporal entities [39]. Methods from the multi-target tracking 
literature can be generalized to search over the vast number of hypotheses [40]. For example, 
Markov Chain Monte Carlo Data Association (MCMCDA) is a novel algorithm to do recursive 
hypothesis formation and management [41]. It has a strong theoretical grounding as an 
approximation to the optimal Bayesian solution, and has been shown to work well in 
practice. We intend to develop a MCMC hypothesis management (MC2HM) in our approach 
as a means to ensure, among other things, a scalable solution.  



III.5 Pragmatic Frames 

Zeigler and Hammond define the idea behind pragmatics is that the consumer’s use of the 
information should determine the description mechanism, or ontology, used by the producer. 
Then, the developer of the ontology, also called data engineer, has the task of tuning the 
ontology to the pragmatic frame [42, page 3].  

Pragmatics is defined as the use of metadata in relation to metadata structure and context of 
application. In other words, pragmatics uses metadata to convey context and its relation to 
meaning, and pragmatic frames uses such context information to disambiguate meaning. The 
idea was based on Speech-Act theory [43-46] and focuses on elucidating the intent of the 
semantics constrained by a given context. For example, suppose that I say: “I see the plane.” 
There is no context here to determine whether the word “plane” refers to a flat space defined 
by at least 3 points, an airplane, or a wood working tool, which are all valid semantic values 
for the word “plane.” It does not make sense to examine, in detail, the low level semantics of 
attributes of the word “plane” when an examination of the use of the plane will obviate 
further examination of the details. 

Pragmatic frames are a means to convey Pragmatics through an ontological framework. 
Basically, they are used to delineate a data engineer’s domain of interest and relate the 
ontology as being adequate or not to this domain. That is, an ontology supports (or is 
applicable to) a pragmatic frame if the world states (or state changes) that it can describe 
include those that are needed by the frame. Further, an ontology is minimal for a frame if it 
supports only that frame, not a larger one, and two ontologies are pragmatically equivalent in 
a pragmatic frame if there is a one-to-one correspondence of their world state descriptions 
such that corresponding descriptions are used in the same manner within the pragmatic 
frame of interest. 

Pragmatic equivalence is an important concept. Even though world state descriptions 
generated by the ontologies may differ, the manner in which they are processed downstream 
leads to the same results. For example, messages sent within one ontology might not differ 
from those of a second except in numerical precision. Consider corresponding number 
strings that are the same only up to a given number of significant digits. Pragmatic 
equivalence holds if both strings are treated equally by downstream processors. We say that 
this difference is absorbed within, or modulo, the pragmatic frame. Of course, another frame 
may treat these strings differently, leading to pragmatic inequivalence in this frame. 

Finally, pragmatic frames can address both static and dynamic situations. Static pragmatic 
frames focus on the comparisons to determine the degree of similarity of two frames, 
subtrees, or trees. Dynamic pragmatics refers to the change in state of the pragmatic frame 
due to a continuously occurring change of context, a discrete-time context change, or a 
discrete event. 

IV TYPICAL APPLICATION SCENARIO 

To illustrate the potential synergy of merging the above concepts in a consistent framework, a 
scenario is presented in which four distinct systems need to co-operate within a disaster relief 



operation such as the aftermath of hurricane Katrina, the disaster relief operations after the 
Asian tsunami triggered by the Sumatra-Andaman earthquake in 2004, or the 2010 Haitian 
earthquake. In such situations, many failures and mistakes occur because of interoperability 
gaps in communications and C2 structure. Such errors can lead to loss of material and lives. 
However, after the emergency peak and as the situation evolves, the communications and C2 
structures adapt to the circumstances and become more reliable. At this point, the relief 
teams and their major support apparatus start the long process of providing relief to the 
victims in the form of medical assistance, food distribution, and other subsistence enablers. 
The lack of a proper infrastructure, combined with the large volume of assets being 
coordinated, imposes a great stress to the IT systems supporting the endeavor.  

In order to replicate this kind of environment, relevant aspects of the systems involved in the 
complex endeavor should be captured, and their respective impacts on their operations 
properly assessed. One of the first tasks of our research is to develop such model.  To that 
end, a rigorous assessment of the conditions in the aftermath of a disaster relief is required. 
For the sake of brevity, we focus here on the problem of food distribution.  

Each system has to deal with a vast amount of information and has a specific data structure 
that optimizes its operations. For example, if system A was designed to deal with the 
transportation of perishable items, it will need to represent information about perishability 
(e.g. expiration dates, transport temperatures, etc). Similarly, if system B’s focus is on 
cataloging and distributing donation items (not only perishable food) it may use metrics 
comparable to A’s, but with different intentions and assumptions over both the semantics 
(e.g. 25 degrees is meant to be the storage temperature for item XYZ) and pragmatics (e.g. 
level of precision required for a specific use for that temperature information). Dealing with 
these minor distinctions is usually expensive and mostly infeasible from a computational 
standpoint. Ultimately, high-level fusion must often be assigned to humans. Ontologies might 
help to overcome the semantic barrier, but there is still the issue of fitness of the information 
to the task at hand. Pragmatic frames address this issue.  

However, the combination of ontologies and pragmatic frames still cannot overcome the 
former’s lack of a standard representation of uncertainty, which is ubiquitous in virtually all 
real world issues in complex endeavors. In the above toy example, suppose System C, 
another system involved in the food distribution process, receives information about item 
XYZ but doesn’t “understand” temperature in degrees Fahrenheit. The consequences of this 
information mismatch will depend on system C’s behavior. One possible outcome is that the 
system computes XYZ’s storage temperature as 25 degrees Celsius (77 degrees Fahrenheit), 
causing a container of XYZ to rot. A less catastrophic output would be that the system 
assumes XYZ’s storage temperature information is missing, incomplete, or incompatible with 
its purposes, raising a flag for human intervention. However, human experts are a scarce 
resource in complex endeavors. Therefore, a probabilistic expert system might be used to 
replicate the behavior of a human expert. A probabilistic ontology with statistical regularities 
about storage temperatures would support the design of systems capable of performing 
plausible inferences on, for example, the average storage temperature for items such as XYZ. 
Obviously, many additional types of uncertainty can arise in complex environments. This 
reinforces the need for a representational scheme that is capable of both representing and 



reasoning in the presence of incomplete, ambiguous, or dissonant information. The 
combination of POs and pragmatic frames is depicted in Figure 4.  

 
Figure 4 – Typical complex endeavor scenario and proposed knowledge integration approach 

As it can be seen in the figure, each participant system will be aligned a probabilistic 
ontology while sharing a common pragmatic frame conveying the pragmatics of food 
distribution. In this case, each system has a different level of participation in the food 
distribution operations, but all are involved and must provide relevant information. The role 
of the food distribution frame is to facilitate communication by establishing pragmatic 
equivalence of the ontologies in the frame. The use of probabilistic ontologies instead of 
conventional ontologies improves the efficacy of this process by enabling representation of 
and reasoning with incomplete knowledge. In the simplified scenario depicted above, the 
output of probabilistic mapping combined with the pragmatic frame information would 
enable a plausible reasoner to infer the posterior likelihood of a scale mismatch given the 
sharp differences between the storage temperature reported and the statistical distribution for 
similar occurrences. Clearly, this example barely touches the inherent complexity of such 
interactions and a more realistic scenario would include various frames covering a large 
spectrum of relief activities. Yet, it does illustrate one of the many aspects of such interactions 
in which we take for granted that a human supervisor would “catch” eventual 
inconsistencies, and in an environment in which time and resources are very limit this 
reinforces the need for a flexible, adaptive scheme for establishing pragmatic equivalence.  



V THE TECHNICAL INTEGRATION STRATEGY 

Our approach to integrating the technologies involves developing support for pragmatic 
frames in the PO editor and devising the necessary adaptations to the System Entity Structure 
(SES) framework [47], the Component-based System Modeling and Simulation environment 
(CoSMoS) [48], and the reasoning aspects of MEBN / PR-OWL. 

The current formulation of a pragmatic frame relies on the SES as an implementable semantic 
and pragmatic ontology. The axiomatic formulation of the SES allows expressions to be 
represented in a formal mathematical/logical language. Zeigler and Hammonds [42] show 
that formal representations allow translations that claim to be equivalent to be examined 
rigorously. In our research, we aim to extend this formulation to include support for 
probabilistic ontologies as a way of keeping the advantages of the current SES framework 
while incorporating the benefits of principled representation of uncertainty and plausible 
reasoning.  

The Component-based System Modeling (CoSMo) offers a foundation to represent families of 
mixed simulatable and non-simulatable models such as DEVS models as well as UML and 
XML Schemas. The development of CoSMo is inspired by databases, SES, UML, and 
Computer Supported Collaborative Work (CSCW). A key concept of CoSMo is to visually and 
incrementally specify a family of state-based, hierarchical component models that can be 
automatically translated to executable code for target simulators. Based on this framework, a 
robust, scalable, integrated modeling and simulation environment called CoSMoS is 
developed [48,49]. It affords verification and validation of a family of models with support 
for built-in logical consistency for cellular, discrete-event, and discrete-time model types. Its 
concept and design is based on visual, persistent modeling with an underlying end-to-end 
process for specifying and executing parallel DEVS models using DEVS-Suite simulator [50, 
51]. In fact, CoSMoS can be used as a testbed for experimenting and evaluating time-based 
interoperability among ontologies represented in MEBN. 

V DISCUSSION AND FUTURE WORK 

To assess the feasibility of the integration approach described above, a proof of concept 
system is planned to apply the techniques of section 3 to a complex issue such as the disaster 
relief problem. The major components include a MEBN reasoner with a set of probabilistic 
ontologies and pragmatic frames, a knowledge base, and a description of a formal theory on 
high-level information fusion.  All these components are under development and at a stage in 
which is premature to claim statistical significance of its results, but their integration into a 
proof of concept system is already being tested in agent-based simulation environments (e.g. 
see high-level fusion work on PROGNOS [52]. The purpose of this paper is to present our 
theoretical framework for the general problem high-level knowledge fusion, which is in its 
own right an important contribution to the C2 community. 
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