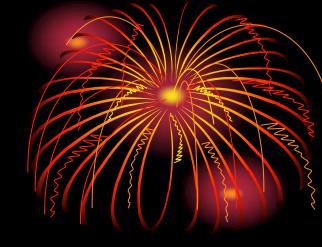


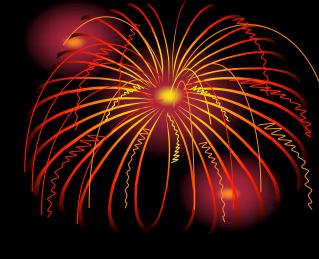
National Key Laboratory of Science and Technology on C4ISR

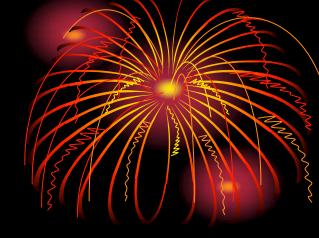
Dr. Songhua Huang NRIEE, CETC, China


Introduction

C2 networks

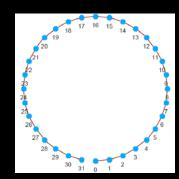
- Offer geographical decentralization, concealment, adjacency and rapid reorganization of C2 elements
- Restricts complexity and uncertainty
- Increases the probability of correct decision-making


Introduction

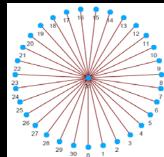

- C2 networks
 - Hard to control its own structure
 - Hard to be adaptive in the respects of self-heal, self-organization, self-evolution
 - Typical topology models are far away from the demands

C2 Network Requirements

- Adaptivity
 - dynamic evolution
- Reliability
 - fault tolerance and self healing
- Credibility
 - flexible, trusted network
- High-efficiency
 - quality of service, availability under attack

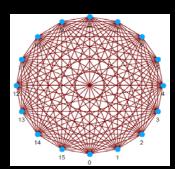


Topology Metrics

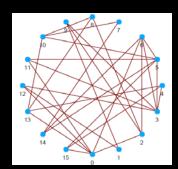


- Link to node ratio 2
- A skew degree distribution
- Small mean path length
- Clustering coefficient ~ 0.1-0.25
- A skew betweenness distribution

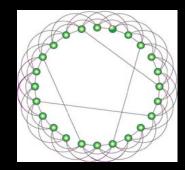
- Chain Coupled Networks
 - Cheapest and simplest networks
 - Brittle with little redundancy
 - Unbearable mean path length
 - Degree is close to two
 - Clustering coefficient→0


- Star Coupled Networks
 - Cheapest and simplest networks
 - Mean path length is short
 - Single point failure
 - Other flaws are similar to chain topology

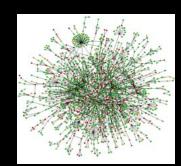
- Nearest-Neighbor Coupled Networks
 - Mean path length is overlong
 - Uniform degree distribution
 - Clustering coefficient drops with accretion of network size



- Globally Coupled Networks
 - Most expensive with highest link to node ratio
 - Enormous number of decisions
 - Shortest mean path length
 - Top clustering coefficient
 - Not scale well


Random Networks

- "Bell' curve degree distribution"
- Relatively low mean path length and clustering coefficient with a large variation from node to node
- Vulnerable to attacks
- Little controllability


Small World Networks

- Adjustable clustering
 coefficient
- Most efficient class of network
- Degrees of all nodes are mostly close

Scale-Free Networks

- High clustering coefficient
- Small world effect with mean path length rising in direct ratio to lg(n)/lg(lg(n))
- A power law distribution
- Robust yet fragile

Situation

- Existing models are not practical to C2 networks
- Fundamental problems
 - No pointed theory on topology creation
 - No method to support dynamic reconstruction of a desired topology
 - No mechanism for credible topology
 - lack of model for performance guarantee

Way out

- Carry out the following work
 - C2 topology Characterization
 - C2 topology rule exploration
 - C2 topology modeling, resolution and construction
 - Natural evolutionary mechanisms of C2 topology

Conclusions

- Complex networks turn on a new light for topology study
- Existing topology theories fail to deal with topology modeling, control, quantitative analysis and optimization of C2 network
- Precise description, construction and evolution of topology is eager for opening out

Thank you'!

