Using Transcription and Replay in Analysis of Collaborative Applications

Seth Landsman, Ph.D. – The MITRE Corporation
Richard Alterman, Ph.D. – Brandeis University
Overview

- Motivation and Problem Statement

- Analysis of Collaboration

- Software Model for Transcription and Replay
 - Instrumentation
 - Generation

- Conclusions and Ongoing Work
Motivation

■ Successful execution of a C2 operation is increasingly a distributed enterprise mediated by a software system

■ Success of an operation, therefore, depends on
 – Success of the underlying software and task environment
 – Success of the collaboration mediated by the software system

■ How can we increase the likelihood of success in a collaborative environment?
 – How can we ensure that collaboration is tailored to the task environment and user community?

■ Being able to understand how the user community uses the C2 system may be able to aid in the engineering of more successful systems

■ Our approach is the in system replay of collaborative activity to support ethnographic analysis of the users’ actions
VesselWorld

The VesselWorld system is a simple, synchronous collaborative application used to study challenges in software mediated collaboration

- Three users work to solve a cooperative problem
 - Each user has a different role in the problem solving
 - Each role has different capabilities
 - Explicit coordination of activity is required to complete the task

To understand the collaboration as mediated via the application, ethnographic analysis was performed

- Analysis indicated that users structured their communication over domain objects and planning
- Enhancements were added that provided tracking of domain objects, and short term and long term planning

Long development cycle followed by imprecise analysis
- Experimenter notes, observations of collected data
VesselWorld
Lessons Learned from VesselWorld

- Adding new capabilities to VesselWorld was expensive:
 - Time consuming to build
 - Hard to enhance once built

- How can we be more precise in the enhancements or changes made to a collaborative application?
 - Shorten the feedback loop between implementation and analysis

- How can we be more precise in how collaborative improvement and issues are observed
 - Improve the tools used to study collaborative activities
 - Improve the analysis methods we have available, as supported by the tools

- As the complexity of collaborative applications increases, the need for techniques to construct applications that are appropriate for the task and user community become more critical
Analysis of Collaboration

- Existing techniques help in the construction of collaborative application

- Each of these techniques provide a piece of the puzzle
 - How can we engineer applications quickly, figure out what information to collect, and do something with the information once it is distilled

- However, the fundamental question of how to collect and work with the user activity is unanswered
Software Model of Transcription and Replay

- Our approach is what we call a “within system perspective” of user activity
 - Compared to having a video camera focused on a user’s screen
 - Over the shoulder view of the user’s activities

- The user activity from the perspective of system events, not UI events, is captured and transcribed
 - Capture chat utterances or planning activity, not key presses and mouse clicks

- The result is that the user activity can be replayed from an individual user perspective or an omniscient perspective

- Our model is implemented into two frameworks
 - THYME is the collaboration construct toolkit that generates the transcripts
 - SAGE is the set of replay components that are applied to a THYME application
Transcription

■ Collection of interaction between the application and the users

■ Features of the transcription capability influence the replay capabilities
 – Completeness
 ■ Both the amount of information and details
 – Types of information collected
 ■ Mouse events, chat events, etc
 – Transitions versus States
 ■ Each atomic unit in the transcript is the system state or an event

■ Customized transcription gives most fidelity of information, but is expensive to implement on a per-application basis
 – Internal transcription is next best (e.g., Morse and Steves, 2000)
 – External transcription lacks information context (e.g., Suchman and Trigg, 1991)
Replay

- Allows ethnographic analysis of groupware application use
 - Online behavior can be captured and recreated exactly through a transcript

- Basis replay capabilities are similar to playing a video tape
 - Features enhance the analysis
 - Precision
 - Search
 - Annotation

- How can transcription and replay be accomplished without significant impact to deployment schedule?
 - Leverage system infrastructure
 - Make replay cheap
Frameworks

■ THYME
 - Framework for building component-oriented groupware applications
 ■ Includes transcription capabilities
 ■ Model of development encourages localized changes
 - Rich library of groupware widgets and components

■ SAGE
 - Class library for replaying THYME applications
 ■ Includes capability to generate replay applications from a THYME application
Instrumentation

- Interaction is collected into an ordered transcript of messages
 - Interaction between components
 - Interaction between the user and the system
Individual components from the basis THYME application are used in the SAGE application

- Cheaper development
- Ensures accuracy of the representation
SAGE for VesselWorld
Ongoing Work

- There is demonstrated benefit to replay of collected usage data for improving collaborative activity
 - More examples in the paper

- However, doing so requires an investment
 - THYME and SAGE reduce that benefit, but it was still an upfront investment to build the frameworks

- Infrastructure has come a long way since we wrote THYME, specifically
 - More introspectable component architectures in J2EE, Microsoft Web Services, etc
 - More distributed architectures in ESBs and general messaging architectures

- How can we leverage these architectures to enable transcription and replay on more general systems?
Conclusions

- Analysis of collaborative applications is key need for building maintainable, adaptable, and usable applications
 - The application changes during its lifetime
 - Building the application is insufficient, it must be analyzed, modified, and redeployed
 - These activities must be factored into the engineering process
 - The proposed system shows how to accomplish the analysis task
- THYME and SAGE are example implementations of the software support necessary for this analysis
 - Automatic transcription of use
 - Generation of replay application
- This work is a first step on being able analyze and learn from a user community’s behavior in situ