
16th ICCRTS

“Collective C2 in Multinational Civil-Military Operations”

Title of Paper
Governing Delegation of Authority within SOA Environments Using KAoS

Topic(s)
Topic 8: Architectures, Technologies, and Tools
Topic 6: Experimentation, Metrics, and Analysis

Topic 9: Networks and Networking

Name of Author(s)

Robert L. Sedlmeyer
Department of Computer Science

Indiana University-Purdue University Fort Wayne
2101 East Coliseum Blvd.

Fort Wayne, IN 46845

Jim Jacobs
Raytheon Network Centric Systems

1010 Production Road
Fort Wayne, IN 46808

Andrzej Uszok
Florida Institute for Human & Machine Cognition

40 South Alcaniz Street
Pensacola, FL 32502

James Milligan
Air Force Research Laboratory

525 Brooks Road
Rome , NY 13441

Point of Contact

Robert L. Sedlmeyer
Department of Computer Science

Indiana University-Purdue University Fort Wayne
2101 East Coliseum Blvd.

Fort Wayne, IN 46845
sedlmeye@ipfw.edu

1

Governing Delegation of Authority within SOA Environments Using KAoS

Abstract. Within the Department of Defense (DoD), delegation of authority is the act by which a
commander transfers part of his authority to a subordinate commander in order to complete an
assigned task or carry out additional duties. Delegation is often limited to specific tasks or for
specific time periods and is commonly governed by policies that specify what may be delegated, to
whom it may be delegated, and under what circumstances delegation may occur. Policies may also
dictate if a person may perform tasks for which he has been given the authority to delegate. KAoS
is a powerful policy management system whose policies are represented in the Web Ontology
Language (OWL), a standard language for semantic modeling. We have built a demonstration
system, based on scenarios from an air operations center, which utilizes KAoS to govern
delegation of authority in the context of web service access control. The KAoS policy language is
expressive enough to support both attribute- and role-based authorization as well as both fine-
grained and coarse-grained access control. We discuss the architecture of our demonstration
system, describe the mechanisms for authorization of delegation actions and web service requests,
and show how KAoS integrates with existing standards for web service modeling, implementation
and security.

1. Introduction.

In this paper we describe an architecture and demonstration system for policy-based access
control of Web services. Our architectural framework is derived from International Organization
for Standardization (ISO) Standard 10181–3 (ITU-T, 1995), which defines an architectural model
for controlling access to networked resources. Web services and access policies are drawn from
activities and procedures associated with an Air Operations Center and a small set of operational
scenarios. These scenarios incorporate realistic patterns of service invocations while exercising
essential capabilities of access control and delegation of authority within a federated environment.
Policies govern both Web service access and delegation of authority. Policies, which are written in
OWL [OWL 2004], are defined and enforced by the KAoS policy services framework. Each policy
permits or denies access to a Web service based on credentials. Some credentials accompany the
request, while others are looked up based on the requestor’s identity.

Central to our governance approach is a Delegation Management Web service. This web service
exposes operations for assigning and revoking roles. Such roles infer subsets of credentials
associated with a specific delegation of authority. Underlying these policies and their supporting
web services, we have constructed a formal model of delegation-of-authority as practiced in an Air
Operations Center. This model, which is also written in OWL, was integrated with the core KAoS
policy ontologies to create semantically rich policies that enable fined-grained control of both Web
service access and delegation of authority.

2

Within the DoD, delegation of authority is the act by which a commander transfers part of his
authority to a subordinate commander in order to complete an assigned task or carry out
additional duties. Delegation of authority is often limited to specific tasks or for specific time
periods and is commonly governed by policies that specify what may be delegated, to whom it
may be delegated, and under what circumstances delegation may occur. Furthermore, policies
may also dictate whether or not a person may perform tasks for which he has been given the
authority to delegate. For example, suppose a flight operations manager has been delegated the
authority to assign pilots to flights. A delegation policy should prevent the manager from assigning
himself to a flight unless he is also a pilot.

Any recipient who is asked to perform a service should be able to verify that the requestor has the
authority to make such a request. If the requestor has not been properly authorized, the request
should be denied. Authorization is commonly based on presenting the recipient with a set of
credentials. Using this information the recipient can decide if the request should be accepted or
denied. Within the context of delegation, the requestor may be a delegate, and the recipient would
also enforce the delegation policy of its organization when considering service requests.

Increasingly, delegation of authority takes place within a computing context. Managers may need
to delegate some privileges to subordinates to enable them to carry out computer-based tasks. In
an enterprise system, Web services themselves may need the ability to delegate the ability to
invoke operations to other services. Service providers need to be able to verify that each service
requestor is properly authorized. If the service requestor has received dynamically-delegated
authority, service providers need to be able to verify that this was done in accordance with their
delegation policy. In addition, whenever delegation of authority is attempted, there must be a
mechanism to ensure that such delegation is permitted.

In designing our access control mechanism, we addressed the requirements specified by Chadwick
[Periorellis 2008] for a general purpose Delegation of Authority Service (DoAS). We summarize
these below. Since we are already assuming that the DoAS is operating within a Service-Oriented
Architecture (SOA), we have omitted the last one.

1. The DoAS should be able to support delegation from person to person, person to task, task
to task, and service to service.

2. Every principal should authenticate with its own independent identity, enabling delegation
to be performed from one named entity to another.

3. To support a scalable authorization infrastructure, access controls should support
attribute- or role-based, where each principal is assigned an attribute set, and each set of
attributes may be used to grant selected access rights to a given resource or set of
resources, e.g. Web service operations.

3

4. Principals should to be able to delegate any of their attributes to other principals. Such
delegation enables the delegee to perform additional tasks that are authorized through its
association with the delegated attributes.

5. The DoAS should embody a delegation policy along with an enforcement mechanism that
will control both the delegation process itself and the authorization process for the
requested Web service.

6. The DoAS should support fine-grained delegation, i.e. the ability to delegate authority to
access a particular operation of a Web service or perform a particular operation on a data
resource.

7. Users should be able to authenticate and prove their identity without having to possess a
public key certificate.

8. The DoAS should support immediate revocation of delegated attributes, cutting short the
originally intended duration of effectivity. Furthermore, acts of delegation themselves
should take effect instantaneously.

In the next section we present our architecture and discuss show how it satisfies these
requirements.

2. Architectural Framework.

Our approach integrates technologies for semantic modeling, Web service access control, and
policy management within an enterprise environment. Software components are written in Java
Enterprise Edition (EE). Access control and delegation management services are implemented as
Web services that conform to Organization for the Advancement of Structured Information
Standards (OASIS) and World Wide Web Consortium (W3C) standards including SOAP, Web
Service Description Language (WSDL) and Extensible Markup Language (XML). For
authentication, these services leverage existing Web Service (WS) security infrastructure that
includes a variety of WS-* standards and specifications. Semantic models and policies use OWL
and Resource Description Framework (RDF).

ISO Standard 10181–3 (ITU-T, 1995) defines an architectural model for controlling access to
networked resources (see Figure 1). In the ISO model, access control is effected by two
components, the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP). The PEP
intercepts incoming requests and asks the PDP if the requestor has the authority to perform the
requested action on the protected resource. The PDP maintains a set of policies that define
necessary credentials for each type of access for each protected resource. Based on the applicable
policy and supplied credentials, the PDP determines if the requester is granted access to the
resource. It returns its response to the PEP, which then either grants or denies the original
request. In this model, the credentials may be provided with the access request, or the PDP can
retrieve them from a credential repository using the requester’s identity.

4

Figure 1. ISO Standard 10181–3 Architectural Model for Network Resource Access Control.

Our architecture is consistent with the ISO Standard 10181–3 model. Figure 2 details components
relevant to both Web service access control and delegation management.

Figure 2. Architecture for Policy-Based Access Control and Delegation Management.

2.1 Runtime Management of Delegation and Access Control Policies.

Functions of the PEP and PDP are distributed among the Access Control Service (ACS), KAoS
Guard and KAoS Directory Service (KDS). The ACS intercepts each Web service request. It extracts
salient information from the request including the requestor’s identity, Web service operation,
and any pertinent contextual information. (Our architecture does not include an authentication

javascript:PopImage('IMG_22','http://images.books24x7.com/bookimages/id_23486/fig134_01_0.jpg','1000','661')�

5

component, but assumes authentication information--at a minimum, the requestor's identity-- is
transmitted with each service request.) The requester’s identity is used to query the Credentials
Repository. The ACS then invokes the KAoS Guard with the supplied credentials to perform an
authorization check. The Guard contains a set of policies that control access to the hosted Web
services. These policies are maintained by the KDS. The KDS ensures that the Guard is configured
with the latest policy set as policies may be updated at any time. The Guard applies the relevant
policy against the supplied credentials. The request is either authorized or denied. Authorized
requests are forwarded to the appropriate Web service. Within our demonstration system, these
web services address Command and Control (C2) capabilities relevant to air operations.

2.2 KAoS Policy Framework.

KAoS is the foundation of our solution for policy-based access control. The KAoS framework is a
policy management system that has sufficient generality and expressive power to span the
breadth of requirements for enterprise applications [Uszok 2004, 2008]. A singular advantage of
KAoS’ OWL-based policies is that they can either be used directly or, because of their rich
semantics, as abstract models that can be converted to special-purpose policy language
representations as necessary. KAoS has been integrated with a variety of agent, robotic, Web
services, Grid computing (e.g., Globus), and traditional distributed computing platforms, and
across a variety of industrial, military, and space applications. Particularly relevant to the SOA
domain, KAoS has been successfully integrated with service-oriented technologies such as JBoss
and Spring, allowing for policy-based control of the interaction among web services.

KAoS also provides basic services for distributed computing, including message transport and
directory services. Because the services are accessed through a well-defined Common Services
Interface (CSI), application developers can selectively use subsets of its capabilities (e.g.,
registration, transport, publish-subscribe, domain management, remote request forwarding,
queries) as appropriate.

The basic elements of the KAoS architecture are shown in Figure 3. Its three layers of functionality
correspond to three different policy representations. The Human Interface Layer provides
administrative tools to construct, edit and distribute KAoS policies. The Policy Management Layer
encodes OWL policies and manages policy-related information for further analysis. The
Distributed Directory Service (DDS) encapsulates a set of OWL reasoning mechanisms based on
two open source components: Jena [McBride 2001] and Pellet [Sirin]. The Policy Monitoring and
Enforcement Layer establishes and maintains KAoS enforcement components known as Guards.
Guards embody “compiled” OWL policies, a representation that affords extremely efficient run-
time monitoring and enforcement at “table look up” speeds. Because, apart from policy updates,
Guards operate independently from the rest of KAoS, they can be used as small-footprint
standalone policy enforcement platforms in disconnected operations. This representation also

6

provides the grounding for abstract ontology terms, connecting them to instances in the runtime
environment and to other policy-related information.

Figure 3: KAoS Policy Service Conceptual Architecture

Within each of the layers, the end user may plug in specialized extension components if needed.
Such components are typically developed as Java classes and described using ontology concepts in
the configuration file. They can then be used by KAoS in policy specification, reasoning and
enforcement.

Policy negotiation provides the mechanism for policy reconciliation and deconfliction between
different nodes/users/applications/groups. Conflicts and ambiguities may emerge for a number of
reasons such actual differences in the administrative requirements of each domain, or the
possibility that different regions of a segmented network may independently learn conflicting
policies, which have to be reconciled (and negotiated) at a later time when connectivity is re-
established.

2.3 Specification of Access Control and Delegation Management Policies.

The KPAT (KAoS Policy Administration Tool) graphical user interface allows end users to
manually specify, analyze, and modify authorization and obligation policies at runtime. KPAT
hides the complexity of the OWL representation from users. The reasoning and representation
capabilities of OWL are used to full advantage to make the process as simple as possible.
Whenever users are required to provide an input, they are presented with a complete set of
context-driven values from which to select.

7

KPAT’s generic Policy Editor presents an administrator with a starting point for policy
construction – essentially, a very generic policy statement shown as hypertext. Clicking on a
specific link that represents a variable provides the user with choices allowing him to make a
more specific policy statement. During use, KPAT accesses the loaded ontologies and provides the
user with the list of choices, narrowed to the current context of the policy construction. New
classes and instances can also be created from KPAT. To further simplify policy construction,
KPAT provides two additional policy creation interfaces: A Policy Wizard to guide users step-by-
step, and a Policy Template Editor that allows custom policy editors for a given kind of policy to be
created by point-and-click methods. For the purposes of defining access control and delegation
management policies for this project, we propose to develop a specialized template editor
containing just the functionality required for the use case scenarios, allowing delegation policies
to be easily defined and analyzed by users without requiring specialized training.

2.4. Delegation Management Service.

The Delegation Management Service (DMS) governs the process of delegation of Web service
access privileges. The delegator may be a person interacting with the DMS via a user interface or a
software agent of some kind (e.g., Web service). Likewise, the role of the delegee can be assumed
by either entity. This functionality fulfills DoAS Requirement 1, as it enables delegation of
authority from person to person, person to software agent, software agent to person or software
agent to software agent.

The DMS will intercept the delegator’s request and pass it to the Guard to determine if this
Principal is allowed to access the DMS. If the request is granted then the request is forwarded to
the DMS. The DMS then determines whether the delegator has sufficient credentials to delegate
the specified attributes to the delegee. KAoS policies determine what delegation of authority
actions can be taken by specific requestors acting in particular roles or who have been assigned
particular responsibilities. The DMS Guard will apply an appropriate delegation policy. This
addresses DoAS Requirement 5.

The primary functionality of the DMS is to augment the credentials of the specified delegee on
behalf of the delegator, and to publish the updated credentials into the repository. Afterwards, the
delegee will be able to use the augmented credentials to gain access to the accompanying
delegated services and may be empowered to further delegate these additional attributes if
allowed by the delegation policy. Common representations for credentials include the X.509
attribute certificate and signed Security Assertion Markup Language (SAML) attribute assertions.
Periorellis has argued that the SAML format might be more flexible [Periorellis 2008b]. To address
Requirement 7, the credentials are digitally signed by the DMS (or related software that actually
creates the new credentials) so that future authorization activities can verify them.

8

Delegation of authority is seldom permanent. The revocation of authority is a challenging problem.
The primary objective of revocation is to remove a credential from a delegee so that it can no
longer be used to gain access to associated resources. The effects of revocation should be
instantaneous. If this is not feasible, a secondary objective is to inform resource providers that an
existing credential has been revoked. The preferred mechanism for the latter objective is to
require providers to periodically check with the credential issuer.

Our revocation mechanism follows that proposed by Chadwick [Periorellis 2008a]. His approach
overcomes limitations by existing strategies including short lived credentials [Tuecke et al.,
2004][Alfieri et al., 2005][OASIS, 2005]), credential revocation lists [ITU-T 2005], and the Online
Certificate Status Protocol (OCSP) [Myers, Ankney, Malpani, Galperin, and Adams, 1999]. In
Chadwick's approach, a credential is issued just once and stored in the issuer’s repository with its
own unique Uniform Resource Locator (URL). The credential is then valid for as long as delegation
is required and can be used many times by many different service providers without having to be
reissued. Revocation is simply and instantly achieved by simply deleting the credential from the
repository. Providers are required to periodically check the presence of the credential using the
URL. This period can vary per application or per request as determined by the provider. Our
demonstration system checks the credentials on a per request basis and assumes they remain
valid for the duration of the request. The preferred manner for credential checking could itself be
determined by policy. This revocation mechanism satisfies DoAS Requirement 8.

2.5 Domain and Policy Ontologies.

Our basic approach to knowledge capture is to use a description logic representation for domain
knowledge expressed as OWL ontologies. An ontology is a formal description of concepts,
relationships, constraints, and axioms that exist for a specified domain [Gruber 2003]. Unlike basic
XML, which embodies semantics implicitly and by convention, an ontology defines a common
vocabulary along with the semantics, and is in a machine-interpretable form to enable people and
machines to reason about them. It explicitly states assumptions by clearly defining relationships
between entities. An ontology has the advantage of separating the domain knowledge from the
implementation, such that operational experts are able to define the ontology, with minimal
training [Noy and McGuinness 2001]. A variety of graphical tools are now available to make the
process even easier.

Rather than construct a single ontology for all of the knowledge in the application, we chose to
work from the key scenarios to arrive at a list of important terms and concepts that would form
the specific elements of policies. This is supported by an established foundational ontology
(Raytheon's Hematite™) and a new 'micro-theory' describing the semantics of delegation. The
micro-theory approach to partitioning was pioneered in the Cyc project [Cyc][CycL] and is used to
define a particular area of knowledge in a contradiction-free manner. We went a bit further to

9

sharpen and narrow a micro-theory to a particular set of inter-related concepts forming a reusable
core within a domain of analysis.

 With the foundational ontology and the delegation micro-theory, we were able to construct a
domain ontology that provides all of the semantics needed to support inferencing and policy-
based reasoning. While a detailed discussion of this ontology is beyond the scope of this paper,
Figure 4 offers a relation-focused concept map of delegation. Note that it incorporates concepts
and relationships from both the human-in-the-loop and web service processes. Domain-specific
policies, such as those used in governing an Air Operation Center, are themselves likewise
represented in an ontology within KAoS and edited with KPAT.

2.6 Authentication.

When a requester desires access to a Web service, the requester must first be authenticated. In
our demonstration system, user authentication (DoAS Requirement 2) is performed via a standard
login mechanism consisting of a username and password. The architecture itself is agnostic of the
authentication mechanism utilized. Most likely, for operation within a federated environment, an
authenticated name will be mapped into an authorization name (possibly with accompanying
attributes) and stored in that user’s credentials. We use PicketLink Federation [PicketLink] for
this purpose. PicketLink is a JBoss Community Project. The Federation subproject provides
support for Federated Identity and Single Sign On. We utilize PicketLink's Security Token Server
(STS) to generate a simple OASIS SAML v2.0 token containing the requestor's identity. This
identity serves as the look-up key for Credentials when applying the authorization policies.

10

Figure 4. A Micro-theory of Delegation: Relational View

3. Operational Scenario and Demonstration System.

Our operational scenario centers on the activities within a notional Air Operations Center (AOC)
that support target weaponeering. Figure 5 details some of the actions performed by AOC
personnel assigned the Targeteer role, while Figure 6 does the same for the Senior Offensive Duty
Officer (SODO) role. In this scenario, the Senior Intelligence Duty Officer (SIDO) identifies a new,
high-value targeting opportunity (a bridge). This begins a chain of activities that are carried out by
personnel acting in the roles of Targeteer, Offensive Officer, and SODO. These activities include
posting the target, determining and selecting weapons options, assessing collateral damage,
formulating an Air Tasking Order (ATO) change, and posting that change to the current ATO. In
this scenario, the SIDO and SODO are also responsible for delegating the roles of Targeteer and

11

Offensive Officer to personnel whose initial roles do not give them authority to carry out all the
required activities.

Figure 5. Targeteer activities.

Figure 6. Senior Offensive Duty Officer activities.

To exercise our delegation of authority and web service access control mechanisms, we
implemented a demonstration system. The system consists of four Java web services to directly
support AOC actions, one Java web service to handle delegation and revocation of authority, and
seven KAoS policies. Each web service is configured with the access control service, which is
implemented as a Java API for XML Web Services (JAX-WS) handler. A simple web application
initiates service requests through a browser interface. The browser interface simulates the
application consoles of the various AOC personnel. A screenshot of the Targeteer’s weaponeering
console is shown in Figure 7.

12

Figure 7. Targeteer’s console.

The operational scenario described here afforded us a rich set of use cases to exercise our
approach. We successfully demonstrated capabilities to control access via policies for both an
entire service and individual service operations, to assign and revoke delegations-of-authority,
and to handle both user and software agent web service requests.

3.1 Technical Details.

To further illustrate our technical approach, we present salient details of the access control and
delegation-of-authority mechanisms for a ‘Target’ web service. The Target web service is a
primitive service, i.e., one which does not invoke operations of another web service. It implements
Create, Retrieve, Update, Delete (CRUD) operations on a target object. We suppose that such a
service exists; our objective is to ensure that only personnel serving in a ‘Targeteer’ role have
access to these operations.

To enable access control, the Target service must be associated with the Access Control Service
(ACS). The ACS is implemented as a JAX-WS Handler. A simple way to link the web service to the
ACS is to use the “@HandlerChain” annotation and specify the ACS as the only handler. The WSDL
document is augmented to identify those operations which will be enforced by KAoS policies. The
WSDL element corresponding to the CreateTarget operation is shown in Figure 8. A

13

“liftingSchemaMapping” attribute of the Security Annotations for WSDL (SAWSDL) schema
[SAWSDL] has been added. The purpose of this attribute is to identify an Extensible Stylesheet
Language (XSL) file that maps the web service vocabulary to that used by KAoS. This is a powerful
mechanism: It allows the KAoS policy and domain ontologies to develop and evolve
independently from the web service schema. The associated XSL mapping file is provided in
Figure 9. In this case, only a simple translation is needed to map the web service operation
requested, CreateTarget, into the KAoS domain concept, CreateTargetAction. In general, the web
service operation and its parameters, and possibly parameter values, may require transformation.

 <xsd:element name="CreateTarget"
 sawsdl:liftingSchemaMapping="CreateTarget2Ont.xsl">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="dm:Target" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Figure 8. A portion of the WSDL definition for the create target operation.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ns2="http://ont.ray.com/TargetService/"
 xmlns:java="http://xml.apache.org/xalan/java"
 exclude-result-prefixes="java">
<xsl:template match="ns2:CreateTarget">
<rdf:Description rdf:about="REPLACE-WITH-KAOS-URI">
<rdf:type
rdf:resource="http://ontology.ihmc.us/TargetAction.owl#CreateTargetAction"/>
</rdf:Description>
</xsl:template>
</xsl:stylesheet>

Figure 9. The XSL Stylesheet that specifies a mapping between

the CreateTarget web service request and KAoS ontology.

When the Target web service is initialized, the associated instance of the ACS is instantiated. This
ACS reads the WSDL and XSL files, and then creates a XSL Transformations (XSLT) transformer for
the CreateTarget request. It also initializes a KAoS Guard that will be responsible for applying the
authorization policies. Subsequently, whenever a CreateTarget request occurs, the ACS intercepts
it. The requestor’s identity is extracted and the XSLT transformer is applied. The resulting data are
used to construct a call to the KAoS Guard to determine if the request is authorized. The KAoS

14

Guard applies the relevant policy. In simple terms, this policy states: “Any Targeteer is authorized
to perform a CreateTargetAction which has any attributes.” If the requestor has been assigned the
Targeteer role, then the request is allowed and the handler forwards it to the Target web service.
If not, an exception is raised and no further request processing occurs.

We note that the Delegation service is designed in the same manner; however, its operations
require more sophisticated interaction with KAoS. Like other web service operations, the
delegation operation itself is controlled by policy. The associated XSL file for the delegation-of-
authority operation is shown in Figure 10. It defines transformation rules that map both the
operation (DelegateRole) and parameters (delegatedRole, delegateeId and delegationContext) to
their ontology equivalents.

<xsl:stylesheet version="1.0"
 :
<xsl:template match="ns2:DelegateRole">
<rdf:Description rdf:about="REPLACE-WITH-KAOS-URI">
<rdf:type
rdf:resource="http://ontology.ihmc.us/DelegationAction.owl#DelegationAction"/>
 <action:hasDelegatedRole rdf:resource="{delegatedRole}"/>
 <action:hasDelegee rdf:resource="{delegateeId}"/>
 <action:hasDelegationContext rdf:resource="{delegationContext}"/>
</rdf:Description>
</xsl:template>
</xsl:stylesheet>

Figure 10. XSL file for mapping a delegation web service request.

There are several policies that apply to delegation operations. One such policy states: “Any
SeniorIntelligenceDutyOfficer is permitted to delegate the Targeteer role to any
IntelligenceOfficer.”

Unlike other web service operations, whenever a delegation operation is permitted, the
credentials of the associated delegatee must be modified. This is accomplished through calls to the
KAoS API that modify ontology instance data. For example, the invocation,
delegateRole(“Targeteer”, “baker”, null), adds a “hasDelegatedRole” property with the value
“Targeteer” to the “baker” instance of an “IntelligenceOfficer”. Each such role delegation is
identified by a unique Uniform Resource Identifier. Later revocation operations reference this
identifier. Revocation operations make changes to both the ontology model and the global
Credentials repository; therefore, revocation of delegation is immediate.

4. Summary

We have built a demonstration system, based on scenarios from an air operations center, which
utilizes KAoS to govern delegation of authority in the context of web service access control. We
discussed the architecture of our demonstration system, described the mechanisms for

15

authorization of delegation actions and web service requests, and showed how KAoS integrates
with existing standards for web service modeling, implementation and security. A powerful
feature of our approach is that it can be applied to existing web services with little or no
modification of service implementation. It also allows the schema used for web service design to
evolve independently of the policy and domain ontologies. Future work will focus on developing
tools for automatically generating the necessary transformation files, more fully supporting
composite and orchestrated web services, and extending the delegation-of-authority micro-theory
to incorporate more concepts and relationships from the Air Operations Center domain.

Acknowledgements

This work was funded by the US Government under Contract FA8750-10-C-0034. We
acknowledge the significant contributions of Amy K. Lange and John Watts of Raytheon and
Maggie Breedy of IHMC.

References

[Arp 2008] Arp, Robert and Smith, Barry. Function, Role, and Disposition in Basic Formal
Ontology. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2008.1941.1>
(2008)

[Bradshaw 2003] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti,
A., Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis, M.,
& Van Hoof, R. (2003). Representation and reasoning for DAML-based policy and domain
services in KAoS and Nomads. Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2003). 14-18 July, Melbourne, Australia. New York, NY: ACM
Press, pp. 835-842.

[Bradshaw 2005] Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch,
L., Chambers, N., Galescu, L., Jeffers, R., Suri, N., Taysom, W., & Uszok, A. (2005). Toward
trustworthy adjustable autonomy in KAoS. In R. Falcone, S. Barber, J. Sabater, and M. Singh
(Eds.), Trusting Agents for Trustworthy Electronic Societies. LNAI. Berlin: Springer.

[Bradshaw 2008a] Bradshaw, J. M., Feltovich, P. J., Johnson, M., Bunch, L., Breedy, M., Jung, H., Lott,
J. & Uszok, A. (2008). Coordination in human-agent-robot teamwork. Proceedings of the 2008
International Symposium on Collaborative Technologies and Systems (CTS 2008), Special
Session on Collaborative Robots and Human Ro-bot Interaction, Irvine, CA, 19-23 May.

[Bunch 2008] Bunch, L., Bradshaw, J. M. & Young, C. O. (2008). Policy-governed information
exchange in a US Army operational scenario. Demonstration track. 2008 IEEE Conference on
Policy, Palisades, NY, 2-4 June.

16

[Cyc] Cyc, http://en.wikipedia.org/wiki/Cyc#Knowledge_base

[CycL] CycL, http://en.wikipedia.org/wiki/CycL#Microtheories

[Gangemi 2002] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L. Sweetening
Ontologies with DOLCE. In A. Gómez-Pérez, V.R. Benjamins (eds.) Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, 13th International Conference,
EKAW 2002, Siguenza, Spain, October 1-4, 2002, Springer Verlag, pp. 166-181.

[Gruber 2003] Gruber, T. 2003. “What is an Ontology?” at http://www-ksl.stanford.edu/kst/what-
is-an-ontology.html.

[McBride 2001] McBride, Brian. Jena: Implementing the RDF Model and Syntax Specification.
Semantic Web Workshop, WWW2001. 2001.

 [Myers 1999] Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (1999). X.509 Internet
public key infrastructure: Online certificate status protocol —OCSP, RFC 2560.

[Noy and McGuiness 2001] Noy, N. and McGuinness, D. March 2001. ``Ontology Development 101:
A Guide to Creating Your First Ontology''. Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880 at
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html.

[OWL 2004] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.

[Periorellis 2008a] Periorellis (ed), Panos. "Chapter V - Dynamic Delegation of Authority in Web
Services". Securing Web Services: Practical Usage of Standards and Specifications. IGI Global.
2008.

[Periorellis 2008b] Periorellis (ed), Panos. "Chapter VIII - Using SAML and XACML for Web Service
Security and Privacy". Securing Web Services: Practical Usage of Standards and Specifications.
IGI Global. 2008.

[Periorellis 2008c] Periorellis (ed), Panos. "Chapter VII - Description of Policies Enriched by
Semantics for Security Management". Securing Web Services: Practical Usage of Standards and
Specifications. IGI Global. 2008.

[PicketLink] http://www.jboss.org/picketlink.

[SAWSDL] David Martin, Massimo Paolucci, Matthias Wagner. Toward Semantic Annotations of
Web Services: OWL-S from the SAWSDL Perspective. Proceedings of the 4th European
Semantic Web Conference (ESWC 2007). June 2007.

17

 [Sirin] Sirin, E., Parsia B., Cuenca-Grau, B., Kalyanpur, A., and Katz, Y. Pellet: A Practical OWL-DL
Reasoner. http://www.mindswap.org/papers/PelletJWS.pdf.

[Sowa 2000] Sowa, John F. Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[Tonti 2003] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., & Uszok, A. (2003).
Semantic Web languages for policy representation and reasoning: A comparison of KAoS, Rei,
and Ponder. In D. Fensel, K. Sycara & J. Mylopoulos (Eds.), The Semantic Web—ISWC 2003.
Proceedings of the Second International Semantic Web Conference, Sanibel Island, Florida,
USA, October 2003, LNCS 2870. Berlin, Germany: Springer, pp. 419-437.

[Uszok 2004] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., & Aitken, S.
(2004). KAoS policy management for semantic Web services. IEEE Intelligent Systems,
July/August, 19(4), pp. 32-41.

[Uszok 2008] Uszok, A., Bradshaw, J. M., Breedy, M., Bunch, L., Feltovich, P., Johnson, M. & Jung, H.
(2008). New developments in ontology-based policy management: Increasing the practicality
and comprehensiveness of KAoS. Proceedings of the 2008 IEEE Conference on Policy,
Palisades, NY, 2-4 June.

