Benefits and Challenges of Architecture Frameworks

Daniel Ota
Michael Gerz
{daniel.ota|michael.gerz}@fkie.fraunhofer.de

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE
Neuenahrer Straße 20
53343 Wachtberg
Germany
Outline

■ Introduction
■ NATO Architecture Framework
■ User Expectations
■ Semantic Issues
■ Organizational Aspects
■ Tool Support
■ Conclusion
Introduction

- Architectures describe parts and excerpts of the real world
 - Considered from different perspectives
 - Varying in levels of abstraction

- Definition (IEEE 1471)
 - The fundamental organization of a system embodied in
 - Its components, their relationships to each other and to the environment
 - And the principles guiding its design and evolution

- Architectures tend to be large and complex
- Require different modeling techniques
Architecture Frameworks

- Modeling architectures requires guidance
 - Architecture frameworks as “templates” for a variety of different architectures

- Architecture frameworks are based on similar concepts
 - Set of architecture views
 - Common terminology
 - Meta model
 - Architecture types
 - Methodology and procedures
NATO Architecture Framework
NATO Architecture Framework

- Seven groups of views
 - NATO All View (NAV)
 - Overarching aspects of the architecture (context, scope, etc.)
 - NATO Operational View (NOV)
 - Tasks and activities of organizational elements
 - Types of information flows and frequency of information exchanges
 - NATO System View (NSV)
 - Systems, their components, interfaces, and interconnections
 - Performance parameters and properties of connections
 - Further: Technical View, Capability View, Service-Oriented View, Program View
Views & Meta Model

- Views divided into a number of subviews
- Details for each subview
 - Purpose and definition
 - Allowed objects and components
 - Relationships within a view and to other subviews

- NAF Meta Model defined in Unified Modeling Language
 - Formal syntax
 - Ensuring consistency of views
 - Linking architectures and their components
 - Contains glossary
 - Semantics of each element to achieve common understanding

[NAF v3, ch. 5, p. 80]
User Expectations

- Interoperability
- Capability-Driven System Development
- Reuse of Architecture Views
- Collaboration across Project Boundaries
- Semantically Unambiguous Descriptions
- Comprehensive Specification
- Automatic Evaluation
Semantic Issues
Terminology

- Adapting the terminology of architecture frameworks

- Example: “Capability”
 - NAF 3 Glossary: “A high level specification of the enterprise's ability.”
 - Army: intelligence, mobility, resistance, …
 - Interoperability program: ability to exchange data in joint operations

- Distinguishing between the concepts “capabilities”, “services”, and “system functions” is difficult

- Too detailed capabilities may resemble services

⇒ Common terms need to be stated more precisely in a specific application context
Design of Views

- NAF distinguishes between operational and system concepts
 - Operational Node: “A logical entity that performs operational activities”
 - System: “A coherent combination of physical artefacts, energy and information, assembled for a purpose (software-intensive)”

- How to model the interaction between systems and human operators?
 - Operational nodes that make use of systems
 - Systems
 - Parts of a system (e.g., a commander within a vehicle)

- Implications on the reuse of architecture views and the representation of specific aspects, such as swivel chair interfaces
Context of Views

- Architecture description by a collection of views
 - Even individual systems characterized by series of views:
 - NSV-1 – System Interface Description
 - NSV-7 – System Quality Requirements Description
 - NSV-11 – System Data Model

- Isolated products without mechanism to
 - Group several views logically
 - Define their context

- Solutions outside the scope of NAF
 - Naming conventions
 - Specific features of modeling tools
Semantics of Model Elements

- Internal structure of technical systems
 - Informal description of the semantics of ports and port connections
 - [NAF v3, ch. 4, p. 64]

- Determine the number of physical ports
 - Three distinct ports?
 - Two physical instances?

- No automated interoperability checks
 - Confusion of inexperienced users
Complexity of Real-Life Systems

- Many variants of a system
- Options
 - Model all system variants explicitly in independent views
 - Model a generic base system and document variants informally
- Modern C2IS supports many interfaces
 - MIP, Link-11/16/22, ADatP-3 (selected message text formats only), etc.
 - Formal documentation impossible
 - Decide on what information is relevant and what has to be generalized
 - No reasoning on interoperability of heterogeneous C2IS
Organizational Aspects
Cross-Organizational Modeling Process

- Architecture design requires a modeling processes
 - Who provides which views at which stage and with what level of detail?
 - Mapping of process and associated user roles onto existing organizational units
 - Consideration of all interest groups into the modeling process from the very beginning
 - Sharing of common understanding of this process by all participants
 - Continuous checks if organization structure and organizational processes still adequate
Maintenance of Architectures

- Changing operational requirements and constraints
 - Architectural descriptions need to be maintained continually

- Reuse of architectural elements
 - Central architecture repository useful

- Organizational unit to coordinate all architecture modeling work
 - Provide methodological support
 - Enforce and adjust the enterprise modeling process
 - Identify relationships between different architectures
 - Avoid redundancies among different architectures
 - Harmonize views with regard to the level of abstraction, terminology and structure
Tool Support
Key Factors of Tool Sets

- Licensing fees
 - Availability of viewer application

- Export functionality
 - Representing information in different ways (graphics, lists, matrices, etc.)

- Linking formal and informal elements
 - Not all relevant information can be modeled formally

- Distributed modeling
 - Role-based approach to enforce proper access control

- Support and extensibility of the meta model
 - Offering allowed elements on a per-view basis
 - Point out potential inconsistencies across individual views
 - Meta model extensions on the level of individual architectures
Conclusion
Conclusion

- Architecture frameworks provide “templates” to design architectures in a structured manner

- Weak semantics of the NAF meta model
 - Restricted automated analysis
 - Not perfectly suited for detailed system specifications
 - Reuse of architecture views problematic

- Lack of guidance and ambiguities
 - Permanent coordination throughout entire modeling process
 - Modeling approach must include development and maintenance procedures
Thank you for your attention!