SECURELY CONNECTING INSTANT MESSAGING SYSTEMS FOR AD HOC NETWORKS TO SERVER BASED SYSTEMS

Philipp Steinmetz
Introduction

- Motivation for Tactical Instant Messaging
 - Bandwidth-efficient
 - Silent information exchange
 - Message history

- Motivation for connection to strategic networks
 - Connection to commanders and technical specialists at HQ
Goals

- Provide instant messaging in tactical networks
- Connect the tactical instant messaging protocol to XMPP
Requirements

- Tactical Instant Messaging requirements
 - Distributed system without a server
 - Security
 - Efficiency
The CIM-TE protocol

- Instant Messaging protocol for tactical environments
- Distributed system
- Uses IP multicast to distribute messages among a group of users
- Text messages
- Presence messages: status updates
The CIM-TE protocol

- **Signature**: Digital signature to provide authenticity
- **Message**: Symmetric message encrypted with AES
- **SenderID, MsgID**: Unique message identification
- **KeyID, TMFlag**: Used by MIKE protocol
The MIKE protocol

- The encryption key is provided by the MIKE protocol
- MIKE: Group key distribution protocol based on Diffie-Hellman key exchange
- Key is provided to all group members
- Key changes when members join or leave
The XMPP protocol

- Used in strategic networks
- Popular instant messaging standard
- XML streams between client and server
- Standards process for extensions (XEPs)
CIM-TE/XMPP gateway requirements

- Connect tactical and strategic messaging
- Maintain security features
 - confidentiality, authenticity, integrity, non-repudiation
- Limit effects of malicious gateway
CIM-TE/XMPP gateway

- Mechanism described in RFC 3923 “End-to-end signing and object encryption for XMPP“
- Sender generates signed messages in CPIM format
- Both protocols use CPIM elements instead of plain text

SenderID MsgID KeyID TMFlag CPIM Signed Signature

encrypted signed

signed
CIM-TE/XMPP gateway

- Gateway translates between CIM-TE messages and XMPP XML stanzas without modifying the CPIM elements
- Receiver can verify the original sender’s signature
- Gateway cannot forge text messages
CIM-TE/XMPP gateway

- Symmetric decryption and re-encryption at gateway
- Gateway is group member: access to all messages anyway
- Low computational cost for encryption
- Independent key management for each protocol
Implementation

- CIM-TE
 - Implemented in Java ME
- CIM-TE with XMPP gateway functionality
 - Implemented in Java SE
- Java advantages
 - Runs on PDAs
 - Libraries available for crypto operations, XML and XMPP
Optimization

- Possible CIM-TE optimization:
 - Replace CIM-TE signature with keyed MAC, since it contains a signed CPIM element
 - Use pre-distributed MAC key
- Message content is still signed by the sender
- Message flags are protected
Cryptographic operations

- Asymmetric crypto operations (signing, verification) are expensive
- Optimization (orange) reduces them for CIM-TE and gateway nodes

<table>
<thead>
<tr>
<th>Node activity</th>
<th>Signing operations</th>
<th>Verification operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM-TE send</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CIM-TE receive</td>
<td></td>
<td>2 1</td>
</tr>
<tr>
<td>XMPP send</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>XMPP receive</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CIM-TE to XMPP</td>
<td></td>
<td>2 1</td>
</tr>
<tr>
<td>XMPP to CIM-TE</td>
<td>1 0</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary

- Gateway between XMPP and CIM-TE, our tactical IM
- Gateway maintains security features with end-to-end signing and re-encryption
- Java implementation
Thank you!

philipp.steinmetz@fkie.fraunhofer.de