Managing Complex Interoperability Solutions using Model-Driven Architecture

Nico Bau, Michael Gerz – Fraunhofer FKIE
Francisco Loaiza, Steven Wartik – Institute for Defense Analyses

16th ICCRTS
June 21-23, Québec City, Kanada
Outline

- Multilateral Interoperability Programme (MIP)
- JC3IEDM
- Model-Driven Architecture (MDA)
- Query-View-Transformation (QVT)
- Summary
The aim of the Multilateral Interoperability Programme (MIP) is to achieve **international interoperability** of Command and Control Information Systems (C2IS) **at all levels** from corps to battalion, or lowest appropriate level, in order to **support multinational (including NATO), combined and joint operations** and the advancement of digitization in the international arena.

MIP has approved Baseline 3 in October 2009!
JC3IEDM

- Joint Consultation, Command, and Control Information Exchange Data Model
- NATO ratification as STANAG 5525
- Latest version: JC3IEDM 3.0.2
 - Plans & Orders, ATO, MMW, CBRN, ...

- Complex data model based on generic core concepts
- Entity relationship model
- Semantic definitions
 - Business Rules
 - Free-text documentation
JC3IEDM Restructuring (1)

- JC3IEDM has been transformed from a small, generic hub into a comprehensive data model

- Configuration Management
 - Growing size and complexity results in configuration management challenges
 - Tracking and applying changes is laborious

- Faster response to user requirements
 - From operational requirement to the field

- Keep existing information exchange services stable
 - Incremental delivery of independent capabilities
 - Modular interoperability solution
JC3I EDM Restructuring (2)

- Entity-Relationship model is platform-specific
 - Database concepts, e.g., key attributes, discriminator codes for sub-typing
 - Not perfectly suited to other application areas

- Resolve well-known problems/workarounds, e.g.,
 - Deletion/update of information
 - Grouping of information
 - Archiving

- Make the model independent from a specific exchange mechanism

- Generalize existing concepts

- Provide a sound basis for the definition of capability- and COI-specific sub-models
Model-Driven Architecture (MDA) in MIP

Semantic Reference

Restructured JC3IEDM

Restriction/Extension

Unification

Capability n

High-Level Platform-Independent Model

Platform-Independent Model

Platform-Specific Model

Artifact (XSD, OWL, Java, ...)

NOV-7

NSV-11a

NSV-11b
Model-Driven Architecture (MDA) in MIP

- Description of “problem space”
- User requirements are defined in a Computation-Independent Model (CIM)
- Input from
 - Nations
 - NATO
 - Lessons Learned
Model-Driven Architecture (MDA) in MIP

- Mapping to “solution space”
- Formal change proposal in XML format
- Describes a subview of the JC3IEDM
 - Classes
 - Associations
 - Attributes
 - Domain values
- Extends/modifies this subview
 - New classes, associations, ...
Model-Driven Architecture (MDA) in MIP

- Extensions may be fed back into Semantic Reference
 - New classes
 - New associations
 - New attributes
 - New domain values

- Impact analysis for other sub-models
- XML change proposal
Model-Driven Architecture (MDA) in MIP

Transformation of sub-model based on Query/View/Transformation (QVT)
Model-to-Model Transformations using QVT

The Standard MOF Layers

Mapping of JC3IEDM to MOF
MOF Level 2 Metamodels

M2 for class diagrams

M2 for database representation
JC3IEDM Instantiation

Example class diagram

Corresponding object diagram
transformation Class_DBMS(classModel: Classes, dbmsModel: Tables) {
 top relation Class_Table {
 domain classModel class: Class {} { name <> 'String' };
 enforce domain dbmsModel table: Table {
 name = class.name.toUpper(),
 columns = pk: Column {
 name = class.name..toLower().concat('key'),
 type = ColumnTypes::NUMERIC,
 isPrimaryKey = true
 }
 };
 where { Attribute_Column(class, table); }
 }
}

relation Attribute_Column {
 domain classModel class: Class {
 attributes = attr: Attribute {} }
};

enforce domain dbmsModel table: Table {
 columns = col: Column {
 name = attr.name.toLower(),
 type = if attr.type.name = 'String' or isEnumeration(attr.type.name)
 then ColumnTypes::VARCHAR
 else ColumnTypes::NUMERIC
 endif,
 isPrimaryKey = false
 }
};

query isEnumeration(name: String): Boolean {
 let size: Integer = name.size() in name.substring(size-4,size) = 'Code'
}
QVT Output Example

Resulting PSM for an RDBMS Representation of the PIM Classes
Summary (1)

- Restructured JC3IEDM PIM
 - Modular
 - Extensible
 - Simple, consistent
 - Work in progress, probably finished by the end of this year

- Change Management
 - Changes Proposals are formal XML documents
 - Changes can be applied to sub-model and/or the whole JC3IEDM PIM
 - Automated impact analysis
 - Different COIs can work in parallel on different sub-models
 - First step towards a domain-based approach
Summary (2)

- Model Driven Architecture
 - Allows for a cleaner, easier to understand PIM and consistent PSMs
 - Improvement in traceability from conception down to the implemented solutions
 - Enhanced solution quality through largely automated conversion of the business constraints and conditions into executable code
 - QVT scripts describe transformations elegantly
 - Transformations and tools are/will be provided by MIP
 - Implementers are invited to extend/improve the transformations for use in their national systems

- Model, Tools, Examples are available at http://mda.cloudexp.com
Questions? Comments?
Thank you very much for your Attention!