
Adapting WS-Discovery for use in tactical networks 

Frank T. Johnsen
Trude Hafsøe



Outline

• Background
– SOA / Web services
– Discovery standards / drawbacks

• WS-Discovery
– Decentralized discovery
– Reduce overhead with emerging compression standard

• Proof-of-concept implementation
• Evaluation using 

1-100 services
1-250 nodes

• Conclusion



Background

• SOA, implemented using Web 
services, is a key enabler for 
NNEC.

• The ability to find services 
dynamically is a requirement
– but challenging in dynamic 

settings. 

• At the same time, we need 
flexibility 
– clients must be able to 

access information in a 
manner that is suited to their 
needs and abilities.

Service
Registry

Service
Consumer

Service
Provider

Bind

PublishFind

Service
Contract



Service Registries

Communication 
between client, 
registry and 
service:

1. Look-up/Search
2. Response
3. Contacting the service



Service Registries

The liveness problem The availability problem



Web services discovery standards

• There are three standards addressing Web services discovery:
– Two registries, UDDI and ebXML

• Registries suffer from liveness and availability problems 
in dynamic environments. 

– The third standard for Web services discovery is WS-
Discovery.

• Decentralized and better suited to dynamic networks.



WS-Discovery

• Open source:
– http://code.google.com/p/java-ws-discovery/

• Decentralized mechanism:
– Robustness: Resilience to partial failure of the network.

– Liveness: An up-to-date view of available services.

• Decentralized solutions are “chatty”: 
– Need to optimize data rate requirements!

• Compression.



An emerging XML compression 
standard

• The W3C has created a specification for efficient XML 
interchange (EXI), which reduces XML overhead by defining a 
binary interchange format.

• Open source:
– http://exificient.sourceforge.net/

• We can apply EXI to SOAP-over-UDP in WS-Discovery, and still 
remain compliant to the standard as discussed in the SOAP 
Messaging Framework standard (section 4.2).



WS-Discovery

• Intended for LAN environments.
– Generates a lot of network traffic.

• Three phases
– Multicast Hello messages (i.e. new services published)
– Multicast Probe messages (i.e. search network), gets unicast 

probe match reply (which can grow very large)
– Multicast Bye messages (i.e. clean removal of services – not 

always possible!)

• We investigate the bandwidth requirements for WS-Discovery 
Hello and Probe messages 
– without compression
– Using EXI



Test data

• 100 WSDL files (Web services interfaces) from actual services.

• Fetched from “http://www.webservicex.net/” and 
“http://www.webservicelist.com/”. 

• Also, the WSDLs from Google and Amazon’s search services 
were included, providing us with a representative set of 
interfaces (table below, sizes in bytes).



Evaluation

• The standard requires all multicast packets (i.e., HELLO, 
PROBE, and BYE messages) to be sent twice, and the unicast 
PROBE MATCH messages to be sent once. 

– We are concerned with WS-Discovery in dynamic 
environments and focus on the HELLO, PROBE, and 
PROBE MATCH messages. 

– We use a small network to capture actual data, then an 
analytical evaluation using the results.



WS-Discovery resource use

• WS-Discovery is based on a query-response model, where a 
multicast query (probe) triggers unicast responses (probe 
match). 

• The load incurred on the network by the number of querying 
nodes (q) in a network with a total number of n nodes can be 
calculated using this formula:
– LOAD = (sizeof(probe) + sizeof(probe match) * (n − 1)) * q 

• If all nodes should have an up-to-date view of the 
currently available services, then q = n. 

• If only one node is querying, then q = 1. 



The HELLO message sizes (in bytes) 
vary with different WSDLs



PROBE (sizes in bytes)

• PROBE

– Uncompressed always 581 (using a generic probe querying 
for all available services with no scope limitations).

– An EXI compressed PROBE message varied between 272 
and 274 (compression varying with varying UUID and time 
stamp in message)



PROBE MATCH (sizes in bytes)



WS-Discovery’s resource use when one
node queries (q = 1)



WS-Discovery’s resource use when all
nodes query (q = n)



Conclusion

• Standards are preferable to proprietary solutions because they 
ease interoperability and reduce the chances of vendor lock-in.
– Though WS-Discovery in our previous research has proven 

itself to be less than optimal for use in tactical networks, its 
resource use is significantly reduced when coupled with EXI 
as our results show.

• WS-Discovery could well be of value in, e.g., a civil-military 
operation, where it could provide a standardized Web services 
discovery capability for both the civil and the military dynamic 
networks.



Thank you for your attention!

• Questions?



SOAP Messaging Framework standard, 
section 4.2

• “SOAP Message Construct provides that all SOAP envelopes 
are serializable using an XML 1.0 serialization, so XML 1.0 or 
later versions of XML MAY be used by bindings as the "on the 
wire" representation of the XML Infoset. However, the binding 
framework does not require that every binding use an XML 
serialization for transmission; compressed, encrypted, 
fragmented representations and so on can be used if 
appropriate.” 


	Adapting WS-Discovery for use in tactical networks 
	Outline
	Background
	Service Registries
	Service Registries
	Web services discovery standards
	WS-Discovery
	An emerging XML compression standard
	WS-Discovery
	Test data
	Evaluation
	WS-Discovery resource use
	The HELLO message sizes (in bytes) vary with different WSDLs�
	PROBE (sizes in bytes)
	PROBE MATCH (sizes in bytes)
	WS-Discovery’s resource use when one node queries (q = 1)
	WS-Discovery’s resource use when all nodes query (q = n)
	Conclusion
	Thank you for your attention!	
	SOAP Messaging Framework standard, section 4.2�

