

A Flexible Toolkit Supporting Knowledge-Based Tactical Planning for Ground Forces

<u>Erich C. Teppan¹</u>, Gerhard Friedrich¹, Christian Pacher², and Manfred Pöckl³

> ¹Alpen-Adria Universität Klagenfurt (Austria) ²Austrian Federal Ministry of Defence ³Austrian Armed Forces

Motivation

- Improved C2 decision making and planning support through the integration of
 - Battlespace terrain information
 - Operational/situational picture
 - Business rules and constraints
- Following tasks should be supported by a corresponding toolkit / framework:
 - Determination of optimal paths for friendly troops based on different optimization functions
 - Calculation of troop movement projection
 - Determination of visibility and zones of fire
 - Modeling of enemy movement and engagement opportunities
 - Identification of danger zones
- Research Project: C2DSAS (Command and Control Decision Support and Advisory Services)

Main Scope of C2DSAS

- Development and test of data structures and algorithms for
 - C2 decision support
 - Ressource optimization
 - Quick replanning in complex situations
- Supporting planning handcrafts by maintaining well defined planning procedures
- Algorithms for
 - Movement planning
 - Enagement planning
 - Visibility and zones of fire
- Efficient data structures for configuration space
- No focus on visualisation
- Development of a prototype framework / toolkit

Configuration Space

- Efficient data structures needed
- In C2DSAS framework: *quadtree* data structure
- Recursively divide map until resulting cells can be classified (or a minimum cell size is reached)
- Quadtree decreases memory consumption and accelerates all further computations

UNI-KLU.AC

Example Quadtree Computation

- Different cell sizes
- Basis for search tree construction

Movement Planning

- Different optimization functions such as
 - Time
 - Distance
 - Engagement opportunities
- Directing path calculations
 - Intermediate path points
 - Special areas

Optimal Paths Based on Heuristic Search

• A*-Algorithm

•

- Intermediate path points for directing search and producing alternatives
- Estimate the probability of enemy contact

Secure Paths

- Identification of danger zones by calculating areas with limited troop formation opportunities along a path
- Green: slightly limited
- Red: extremely limited
- Other areas: unlimited

Special Areas: Inhibition

Special Areas: Acceleration

Troop Movement Projection

Reachable areas for two different time periods

Engagement Planning

- Identification of obstacles and dividing areas
- Identification
 of possible
 and favorable
 engagement
 areas

Engagement Planning: Minkowski Sum

- Sum of two sets S and T in the euclidean space: •
 - $S +_M T = \{s + t \mid s \in S, t \in T\}$
- In 2D: •
 - Slide one shape over the borders of another —

Example Minkowski Calculation

Every cell that is not part of an enlarged area constitutes a centre point of a corresponding engagement area

Visibility and Zones of Fire

- Based on an identified engagement area
- 2D: incorporates dividing areas like forests
- 3D: also incorporates elevation data

15

Toolkit Architecture

Conclusions

- C2DSAS toolkit constitutes a valuable and generic collection of Al software methods focusing on tactical planning for ground force operations
- No automatic decision making
- Effective support of basic planning handcrafts
- Future work:
 - Development of an intelligent user interface
 - Development / extension of a business rule database
 - Full integration into C2IS of the Austrian Armed Forces

Thank you for your attention!

• Questions?

