DEFENCE

DÉFENSE

A Situation Analysis Toolbox for Course of Action Evaluation

Patrick Maupin, Anne-Laure Jousselme, Hans Wehn, Snezana Mitrovic-Minic, Jens Happe

R & D Defence Canada - Valcartier

MacDonald, Dettwiler and Associates (MDA)

Defence Research and Development Canada

Recherche et développement pour la défense Canada

Outline

- 1. Formalisation of the Situation Analysis process
 - Situation, Situation awareness, Situation analysis
- 2. Situation Analysis Toolbox (SAT) implementing the previous theoretical concepts
 - Modeling situation as a pursuit-evasion game
 - Counter-smuggling vignette
 - Five Modules
 - 1) Behaviour simulation toolbox
 - 2) Discretisation toolbox
 - *3) State generation toolbox*
 - 4) State searching toolbox
 - 5) Visualization toolbox

Defence R&D Canada • R & D pour la défense Canada

3. Conclusions

Interpreted Systems Semantics for situation analysis

Interpreted systems semantics is an epistemic logical approach proposed in the 1995 for the analysis of distributed systems by **Fagin**, **Halpern**, **Moses** and **Vardi**

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge. The MIT Press, Cambridge, MA, 2003.

RD a

Interpreted Systems Semantics for situation analysis

- <u>Hypothesis</u>: *Interpreted Systems Semantics* is a general framework for situation analysis and high-level information fusion applications
- <u>Arguments</u>:
 - Designed for **distributed systems** analysis;
 - **Situations** are adequately represented by state transition systems;
 - The notions of Situation, Situation Awareness and Situation Analysis can be formally defined;
 - Allows reasoning about **knowledge**, **uncertainty** and **time**;
 - The framework is general enough so that Generalized Information Theory can be framed into ISS;
 - Can take advantage of both model checking and inductive decision procedures.

P. Maupin and A.-L. Jousselme. A general algebraic framework for situation analysis. In *Proc. of the 8th Int. Conf. on Information Fusion, Philadelphia, PA*, USA, July 2005.

$$\mathcal{I} = \langle S, P, \gamma, \pi \rangle$$

 π is an interpretation function for formulas in $\mathcal{I}(\Phi)$

RD S

Situation

A *situation* is the subsystem $\mathcal{I}(r,m)$ of \mathcal{I} , that is the system representing *P* in the interpreted context $(\gamma_{(r,m)},\pi)$

3 remarkable cases:

- 1. Global state
- 2. Given a single initial state
- 3. Full spectrum of possible paths

Awareness as resource-boundedness

An agent is *aware* of a formula ϕ if it is able to compute its truth value

$$(\mathcal{I}, r, m) \vDash A_i \phi \text{ iff } \mathsf{A}_i(\phi, l_i) \neq "?"$$

Algorithm for truth evaluationLocal data = Observations $A_i = alg_i(r, m)$ $l_i = obs_i(r, m)$ with $A_i(\phi, l_i) = \begin{cases} Yes \text{ if } \phi \text{ is true} \\ No \text{ if } \phi \text{ is false} \\ ? \text{ if the agent is unable to compute} \end{cases}$

 \rightarrow The fact that the algorithm can compute the truth value of ϕ does not mean that this is the correct truth value.

 \rightarrow Awareness is a practical notion of knowledge

Situation analysis (proposed approach)

Situation analysis is the process of verifying properties of the interpreted system expressed by a formula ϕ_{KT}

$$(\mathcal{I}, r, m) \vDash \phi_{KT}$$

Engineer view of Interpreted Systems

SAT – A Situation Analysis Toolbox

SAT – A Situation Analysis Toolbox

2 purposes:

- 1. Situation generation
- 2. Situation **analysis**

RD

0.3

Situations as pursuit-evasion (PE) games

- Pursuer and evader agents are constrained to move within a **graph** whose nodes are possible locations and whose edges denote paths between two locations.
- PE consists in a game between two teams having opposite goals, the players jointly seeking to maximize (resp. to minimize) a function of distance.
- Each agent has a **visibility** sensor of sensing range *r* meaning that the agent can see a node if it is within its range.
- Capture occurs when a pursuer and the evader are at the same position (node) at the same time.
- Basic action: Move from one node to an adjacent node.
 - The evader's strategy P_e is unknown to the pursuers.

A smuggling operation has been reported in Howe Sound (north-west of Vancouver on Canada's West Coast).

Can we guarantee that the smugglers will be detected ?

Defence R&D Canada • R & D pour la défense Canada

SAT – *Behaviour Simulation Toolbox*

SAT – *Discretisation Toolbox*

SAT - The State Generation Toolbox

Defence R&D Canada • R & D pour la défense Canada

SAT – *State Searching Toolbox*

SAT – Vizualisation Toolbox

Conclusions

- The Situation Analysis Toolbox (SAT) implements formal notions of situation analysis based on epistemic state transition systems.
- The SAT generates situations based on
 - 1. an abstract version of the environment (visibility graph) enriched with probability maps of presence of agents, built through modeling emerging behaviour.
 - 2. the execution of a joint strategy derived from pursuitevasion game theory.
- The SAT **analyses** the situation through logical queries.

Further works:

- Epistemic and probabilistic queries
- Customise to account for other applications

DEFENCE

DÉFENSE

Ե

SAT - Vizualizer

