

Developing collaboration in complex events: A model for civil-military inter-organizational problem-solving and decision-making

Louise Lemyre, PhD, FRSC, & Celine Pinsent, PhD

GAP-Santé Research Unit, Institute for Population Health University of Ottawa

16th ICCRTS: Collective C2 in Multinational Civil-Military Operations Québec City - June, 2011

© Lemyre et al., 2011

Contributors: The interdisciplinary GAP-Santé Team

 with Paul Boutette, Wayne Corneil, Colleen Johnson, Jo Riding, Cecilia Lemus, Stephanie Blust, Dave Riding.

Acknowledgements:

- Our In Vivo project within a broader DRDC Technology Innovation Fund on Meta-organizational Decision-Making, led by Dr. Paul Chouinard
- With the financial support of DRDC-CORA TIF Initiatives, SSHRC and The R.S. McLaughlin Foundation
- We want to thank all of our various partners and collaborators, especially those of DRDC, Canadian Forces, Government of Canada, United Ways, Red Cross and emergency response teams.

In vivo project goals

1. Develop a metaorganizational shared decision making framework

2. Test the framework through *in vivo* simulation

3. Document a psychosocial model on interagency collaboration and decision-making 4. Provide suggestions for overcoming social and cognitive barriers to interagency collaboration

In vivo project overview

- Literature review included a survey of decision making practice across numerous types of organizations
- Case studies included both Canadian and international extreme events with multi-level, multi-jurisdictional interaction
 - Mixed methods data gathering : Qualitative analysis of interviews as well as the qualitative and quantitative analysis of the *in vivo* simulation experiment

Literature review

Literature review aimed at a broad understanding of:

- Various types of organizational structures involved with problem-solving during complex events (ICS, HRO, Community development, Private sector, Public service)
- Decision-making strategies used by different organizational structures
- Key organizational characteristics such as types of authority, interaction and roles

Case studies

Considerations

 Model conceptualized within an extended timeline from pre-event to reconstruction

- Complex situations require diverse approaches
- These approaches may combine, unroll in parallel, and interact in a recursive fashion.
- Decision-making is only <u>one</u> stage in the problem-solving process
 - Other stages include identifying the problem, defining the problem, generating solutions, decision-making, implementing solutions, and monitoring implementation
- Multi-disciplinary approach is appropriate
 - Integrates findings from diverse disciplines and fields of practice
 - Will lead to a more robust and relevant model

Shared Decision Making (SDM) Framework

A Model for Inter-Organizational Problem Solving

Videos

- Gap-Santé Video
- PRiMer Overview Video
- PRiMer DST Video
- Social Media Video
- C4 SDM Framework Video
- In-Vivo Tool Video

© Lemyre et al., © Lemyre et 2.0200

Model of inter-organizational problem-solving

Two main components:

- Situational complexity (simple, complicated, complex)
- Inter-organizational approach to problem-solving (Coord., Coop., Coll.)
- Two main modifiers:
 - problem-solving stage (problem definition, solution generation, implementation, evaluation)
 - available assets (power, resources, and information)

Situation Complexity

Three main factors of situational complexity

- The impact of the event, (actual, perceived and potential impacts)
- The uncertainty (novelty, unknowns, unrolling)
- The vulnerability/resiliency of those who may be impacted

(Social, economic, educational)

Approach to problem solving

Stages of problem-solving

 Problem solving is an iterative process

uOttawa

Consecutive parameters

 Different stages require different problem solving approaches

Methods: Inter-GAP in vivo system

HYDRA-like system

u Ottawa

- Working in Pods (groups)
- Based on a scenario
 - ("dirty bomb"; situated in a fictional midsized Canadian border town called "Gapville"

Inter-GAP in vivo system

With a software of communication (Nefsis) (camera, audio, chat)

- Examines interaction both within groups and between groups
- 2 I.V.:
 - Group composition
 - Homogeneous
 - or Mixed
 - Approach
 - Coordination
 - or Collaboration

Overall session composition for in vivo experiment

- Sessions typically holds nine participants grouped three to a pod
- Participants drawn from three types of organizations
 - Military
 - ICS non-military
 - Non-ICS
- PODS are either Homogeneous or Heterogeneous

Preliminary Results

- Fourteen in vivo sessions to date
 - Senior decision makers
 - Early career professionals
 - Naïve participants (to pilot)
- In-depth qualitative interviews
 - Senior decision makers
 - Military, police, health, social services
 - Focus on a real experience of problemsolving in a multi-organizational context

Results: Situation Complexity

- Event players/organizations need to understand what drives complexity
 - Initial tendency to view event as less complex
 - Increased diversity of organizations → more rapid and accurate assessment of event complexity
 - Increased emphasis on <u>social</u> complexities in addition to technical complexities → better situational awareness

Results: Problem Solving

Collaboration

- Requires practice
- More heavily influenced by trust and relationships → less procedural driven
- Higher levels of frustration, but also higher levels of satisfaction with decisions
- Linked to the capacity to view "big picture"
 - Integrated multi-org perspective greater than sum of multiple organizations' perspectives

Results: Problem Solving

Cooperation

- Important to consider sharing of information and resources <u>and</u> the allocation of resources
 - Conditional "sharing" can be a challenge

Coordination

- Perceived as easier than collaboration
 - Takes less time, less frustration, less negotiating
- Emphasis on defining "who is in charge"

Results:Organizational Structure

- Organizational cultures impact multi-org problem solving
 - Interpersonal trust vs. organizational trust
 - Capacity of orgs to expand, extend, emerge is related to their culture
 - Culture influences the capacity of orgs to share info, resources, power/authority → capacity to coordinate, cooperate, collaborate

Groupe d'Analyse Psychosociale, uOttawa

Louise Lemyre, Ph.D., FRSC Director of "Groupe d'Analyse Psychosociale de la santé", GAP-Santé Professor of Psychology, Faculty of Social Sciences The McLaughlin Research Chair on Psychosocial Risk Institute of Population Health University of Ottawa

louise.lemyre@uOttawa.ca

www.gapsante.uottawa.ca

www.youtube.com/user/GAPSante