Measures of Similarity for Command and Control Situation Analysis

Eric Dorion
Alexandre Bergeron Guyard
DRDC Valcartier

June 2011
16th ICCRTS, Québec, Canada
Presentation Layout

• Introduction

• Case-Based Reasoning for C2 Information Systems
 – CBR Challenge : Measuring Similarity

• Measures of Similarity
 – Geometry-based measures
 – Feature-based measures
 – Structure-based measures
 – Transformation-based measures
 – Information Content-based measures

• Choosing a Measure of Similarity for CBR

• Conclusion
Introduction

• Command and Control (C2) in Multinational Civil-Military Operations is a demanding environment
• Information Systems supporting this environment need adaptable automated reasoning capabilities
• Case-Based Reasoning offers a flexible approach to automated reasoning compared to formal logic approaches.
• CBR relies on the ability to establish similarity between unfolding situations (current cases) and known cases (from a case base)
• Measuring similarity is CBR’s Achile’s heel.
• Understanding measures of similarity is of prime importance to successfully apply CBR.
Case-Based Reasoning Basic Concepts

• The Case-Based Reasoning Cycle

 – Retrieve similar cases to the problem description
 – Reuse a solution suggested by a similar case
 – Revise or adapt that solution to better fit the new problem
 – Retain the new solution once it has been confirmed or validated
Case-Based Reasoning Basic Concepts

• The Case-Based Reasoning Challenges

 – A standard problem template must be produced in order to describe and organize problems in a way that will allow comparison

 – In order to retrieve a similar problem from the case base’s problem space, there must be a way to measure similarity between problems
Measures of Similarity

- Geometry-based Measures
- Feature-based Measures
- Structure-based Measures
- Transformation-based Measures
- Information Content-Based Measures
Measures of Similarity

- Geometry-based Measures
- Feature-based Measures
- Structure-based Measures
- Transformation-based Measures
- Information Content-Based Measures
Measures of Similarity

- Geometry-based Measures
Measures of Similarity

• Geometry-based Measure: K Nearest Neighbor Rule

\[P(C_{\text{current}}) \text{ is associated with Case } T \]
Measures of Similarity

- Geometry-based Measure: K Nearest Neighbor Rule

If $k=3$, then $P(C_{current})$ is associated with Case T.

If $k=4$, then $P(C_{current})$ is associated with Case S.
Measures of Similarity

- Geometry-based Measure: Cosine Similarity

\[
sim(C_{\text{cur.}}, C_{\text{CB}}) = \begin{cases}
\text{Identical,} & \text{if } \cos(\vec{P}, \vec{Q}) = 1; \\
\text{Independent,} & \text{if } \cos(\vec{P}, \vec{Q}) = 0; \\
\text{Opposite,} & \text{if } \cos(\vec{P}, \vec{Q}) = -1; \\
(dis)\text{similar,} & \text{otherwise.}
\end{cases}
\]
Measures of Similarity

- Geometry-based Measure: Cosine Similarity (Limit?)

Feature y is more important than x.

$\theta_1 = \theta_2$ implies that $\cos(\theta_1) = \cos(\theta_2)$, but $\text{dist}(P_1,Q_1) > \text{dist}(P_2,Q_2)$.

What does that mean in the conceptual space?
Measures of Similarity

- Geometry-based Measure: Limits

Amos Tversky in 1977 showed examples where these axioms were violated.

\[
\begin{align*}
 d(x, y) &\geq 0; \text{ non-negativity,} \\
 d(x, y) &= 0 \quad \text{iff} \quad x = y; \text{ identity,} \\
 d(x, y) &= d(y, x); \text{ symmetry,} \\
 d(x, z) &\leq d(x, y) + d(y, z); \text{ triangle inequality.}
\end{align*}
\]
Measures of Similarity

- Geometry-based Measures
- **Feature-based Measures**
- Structure-based Measures
- Transformation-based Measures
- Information Content-Based Measures
Measures of Similarity

• Feature-based Measures

\[A = C_{\text{current feature set}} \]
\[B = C_{\text{CB feature set}} \]

Tversky’s index:

\[S(A, B) = \frac{|A \cap B|}{|A \cap B| + \alpha \cdot |A - B| + \beta \cdot |B - A|} \]
Measures of Similarity

- Feature-based Measures: Limits

\[A = C_{\text{current feature set}} \quad B = C_{\text{CB feature set}} \]

This similarity measure only depends on the feature count. Does not take into account feature weighting.
Measures of Similarity

- Geometry-based Measures
- Feature-based Measures
- **Structure-based Measures**
- Transformation-based Measures
- Information Content-Based Measures
Measures of Similarity

- Structure-based Measures

\[Sim(\text{Male}, \text{Female}) = 1 \]
\[Sim(\text{PhD Student}, \text{Male}) = 2 \]
\[Sim(\text{Tenured Prof}, \text{Registrar}) = 2 \]
Measures of Similarity

- Structure-based Measures: Limits

 - Similarity value highly dependent on structure and semantic content
 - Difficult to compare concepts of distinct structures
Measures of Similarity

- Geometry-based Measures
- Feature-based Measures
- Structure-based Measures
- **Transformation-based Measures**
- Information Content-Based Measures
Measures of Similarity

• Transformation-based Measures

TBM s count how many allowable transforms are necessary to shape one pattern into the other.

- Hamming: How many differences?
- Levenshtein: How many inserts, deletes and substitutes?
- Damerau–Levenshtein: Levenshtein + transposition
- etc.
Measures of Similarity

• Transformation-based Measures: Limits

- Computes differences between *strings* (DNA, bitstreams, speech flow, etc.)
- Cases representation complexity
- Cases (between the Case base and the current case) may present too many differences (topological, semantics, context) for the measure to make sense
- Difficult to establish what are the allowable and relevant transformations for between cases.
Measures of Similarity

- Geometry-based Measures
- Feature-based Measures
- Structure-based measures
- Transformation-based Measures
- Information Content-Based Measures
Measures of Similarity

• Information Content-Based Measures

Resnik 1999

- Based on Information Theory
- The similarity between 2 concepts within a taxonomy corresponds to the information content of the closest parent concept.
- A probability of occurrence is associated to every concept in the hierarchy.

\[
\text{Sim} (\text{Pitbull, Labrador}) = \text{Information content of } \text{Dog} = - \log(0.4) = 0.92
\]
\[
\text{Sim} (\text{Siamese, Dog}) = \text{Information content of } \text{Animal} = - \log(1.0) = 0
\]
Choosing a Similarity Measure for CBR

• Case representation and feature selection is a hard problem because the application domain is complex (C2 in Multinational Civil-Military Operations)

• A mix of Geometry-based and Feature-based measures have been used in DRDC Valcartier.
 – Lesson learned: Must take into account the military operation. (Scalability?)

• Structure-based measures’ reliability depend on case representation, which varies a lot (many different standards).

• Transformation-based measures suffer from being too “local” (string-based). Difficult to see how it could apply to complex cases.

• Information content-based measures are under development. Resnik’s approach too restrictive (what about Entropy?)
Conclusion

• The problem of characterizing Command and Control (C2) in Multinational Civil-Military Operations: What are the most relevant features?

• C2ISs using Case-Based Reasoning seems to be promising, but is the solution scalable and shareable to the Multinational Civil-Military Operational environment?

• CBR requires the ability to establish similarity, which is a cognitive process. Are we there yet? More research? Most certainly!